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Abstract

This report explores some techniques used to censor information in transit on the Internet. The attack
surface of the Internet is explained as well as how this affects the potential for abuse by powerful nation
state adversaries. Previous research and existing traffic fingerprinting and obfuscation techniques are
discussed. Rosen, a modular and flexible proxy tunnel, is introduced and evaluated against state-of-the-
art DPI engines, as are some existing censorship circumvention tools. Rosen is also successfully tested
from behind the Great Firewall in China.
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“The saddest aspect of life right now is that science
gathers knowledge faster than society gathers wisdom.”

— Isaac Asimov

1 Contextual Background

1.1 Information on the Internet

Information is one of the world’s most valuable resources. Everything we do relies on it: from the content
that we produce and consume to all the decisions we make. Every scientific and technological breakthrough
throughout history has depended on gathering, processing, and disseminating information, and making it
persistently accessible for future advancements to build upon. Isaac Newton famously said, “If I have seen
further it is by standing on the shoulders of Giants”.

The invention of computer networks and the subsequent development of the Internet caused an explosion in
the volume of information easily available and the speed with which it can be distributed to many people
across large distances. This has facilitated vast creation of wealth [1] and many of the world’s most valu-
able companies have an existential reliance on it. Google and Facebook make the majority of their profits
from digital advertising, which uses harvested user data to target advertisements [2]. Digital data streaming
services like Netflix and Spotify exploit low costs and high reach to profit from products that physical distri-
bution centres cannot feasibly monetise [3].

As infrastructure develops and new technologies are introduced, the amount of information stored and ex-
changed over the Internet will increase as more people will have access to faster connections and more devices
and servers will be connected. Satellite Internet Service Providers (ISPs) like Starlink could provide Internet
access to underserved and hard to reach areas of the world. 5G massively increases the bandwidth available
to cellular clients and could make the wide-scale deployment of “smart” Internet of Things (IoT) devices
feasible!.

1.2 Security of Internet Protocols

The exchange of information on the Internet is facilitated by agreed upon standards. These were designed
primarily with scalability and reliability in mind with little attention being given to security. As such, most
of these protocols are unencrypted and unauthenticated which has led to mass exploitation in the form of
surveillance and censorship.

The Domain Name System (DNS) [5] protocol, which is used to translate domain names to Internet Pro-
tocol (IP) [6] addresses, is susceptible to attacks where an on-path adversary can inspect and modify traf-
fic, compromising data integrity, authenticity, and confidentiality. ISPs exploit these weaknesses to imple-
ment censorship [7] and harvest user data, sometimes leading to security issues [8]. DNS Security Exten-
sions (DNSSEC)—an extension to DNS that attempts to add cryptographic authenticity—is criticized as
being unsafe [9] and is not widely deployed [10].

Transport Layer Security (TLS) [11] is widely used to negotiate a channel that implements confidentiality,
authenticity, and integrity for communications over computer networks. Using TLS, a server can prove
ownership of a domain by providing clients with a public key that has been signed by a trusted Certificate
Authority (CA), or peers can maintain a list of trusted keys that can be used to authenticate other peers.
Delegating trust to a CA may be undesirable so DNS-based Authentication of Named Entities (DANE) was
proposed to authenticate TLS peers without a CA using DNSSEC. However it raises its own problems and

1oT devices, which are usually embedded within trusted networks, have suffered from many security vulnerabilities due
to a lack of incentive for manufacturers to design secure systems and provide security updates [4]. However these issues are
orthogonal to the topic of this report and so won’t be discussed further.
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Figure 1: A client connecting to example.com through a Content Delivery Network (CDN) that hosts many
websites.

did not gain traction [12].

Most websites on the World Wide Web have shifted from serving content using Hypertext Transfer Proto-
col (HTTP) [13] to HTTP Secure (HTTPS)—which typically uses TLS—so clients can be reasonably confident
that they are communicating with the correct server, that the link is confidential, and that messages were
not modified in transit. Similarly, DNS over TLS (DoT) and DNS over HTTPS (DoH) may be used to
communicate with DNS resolvers over an encrypted channel, but they do not provide end-to-end security
as the route between resolvers and authoritative name servers remains unencrypted, and they provide no
guarantees about the correctness of responses other than that the client received what the resolver sent.

If a client initiates a TLS connection to a server that does not own the queried domain, it is unlikely that the
server will supply a valid certificate for that domain. Therefore configuring clients to always use HTTPS?
mitigates the risk of malicious DNS responses. This strategy only prevents situations where a malicious
server is attempting to masquerade as a legitimate service. In particular, it does does not prevent DNS-based
Denial-of-Service (DoS) attacks.

When clients initiate a TLS connection by sending a Client Hello message, the server responds with a
Server Hello containing a certificate proving its ownership of the domain. Many websites today are hosted
behind CDNs (fig. 1) which must respond with a certificate that is valid for the domain that the client re-
quests. This information usually resides within the HTTP Host header that is sent after the TLS handshake
is completed. One possible solution would be for the CDN to respond with a certificate that includes all the
domains it is able to serve, but the certificate would then have to be revoked and re-issued every time this
list changes, and the compromise of the private key would result in the authenticity of many websites being
broken instead of just one. Server Name Indication (SNI) tackles this issue by including the domain name
within the Client Hello message, which the server can then use to select a suitably scoped certificate to re-
spond with. However, this information is not encrypted so an on-path adversary can exploit this vulnerability
to implement surveillance and censorship. Encrypted SNI (ESNI) was an experimental attempt to fix this
security flaw by encrypting the SNI payload, but it has been superseded by Encrypted Client Hello (ECH)
[14] which encrypts the entire Client Hello message®.

TLS is not a perfect solution. The Border Gateway Protocol (BGP) [15]—which is responsible for routing
internet packets—lacks authentication meaning that someone with sufficient access can publish a false claim

2Servers can use HTTP Strict Transport Security (HSTS) to instruct clients to refuse to connect to their service over an
unencrypted channel, but the first request remains vulnerable as the client is not yet aware of the server’s policy. This is called
Trust On First Use (TOFU). Preloading HSTS policies into browsers solves this issue, and there exist Top-Level Domains (TLDs)
that preload all their domains.

3 A side effect of ECH is making it much harder to perform a TLS client fingerprinting attack.



about IP ownership resulting in packets being routed to a host that does not own the associated IP address.
There have been attempts to introduce BGP Security (BGPsec), an authenticated extension of BGP, but it
is not widely deployed [16]. The assumption that packets are routed correctly underpins the authenticity of
TLS certificates issued by CAs, but new issuances show up in certificate transparency logs which would raise
a warning about such an attack. Other mitigations include using multiple servers around the world to verify
domain ownership and using DNS Certification Authority Authorization (CAA) to whitelist specific CAs.

1.3 Exploitation of the Internet by Nation States

The large attack surface of Internet infrastructure is especially worrying considering that powerful entities
seek to exploit it. In popular culture the combination of strict surveillance and censorship programmes is
commonly associated with totalitarianism [17], [18].

1.3.1 Mass Surveillance

Many nation states and other well-positioned entities seek to collect information about people and their ac-
tivities on the Internet. Mass surveillance—which is when an entire or large subset of a population is broadly
monitored—is often cited as necessary in order to prevent terrorism, crime, social unrest, and to protect na-
tional security interests. Conversely, mass surveillance has equally often been criticised for violating privacy
rights, being illegal, and giving governments the power to develop a “surveillance state” where civil liberties
are infringed and political dissent is undermined.

Such criticisms are not without precedent. For example, COINTELPRO was a repressive and illegal domestic
counterintelligence programme run from 1956 to 1971 by the Federal Bureau of Investigation (FBI) aimed
at surveilling, infiltrating, discrediting, and disrupting domestic political organisations, including feminist
groups, communist parties, anti-Vietnam War organisers, civil rights activists and environmental and animal
rights groups [19]. “The FBI unilaterally determined whether any domestic political organizations posed a
threat to national security and if so whether to authorize operations.” [20]

In 2013, ex-National Security Agency (NSA) contractor Edward Snowden stole more than a million confi-
dential documents—of which thousands have been published [21]—that reveal numerous global surveillance
programs, many run by the NSA and the Five Eyes (FVEY) intelligence alliance with cooperation from
telecommunication companies and European governments [22], [23]. Documents show that the NSA and
GCHQ worked together to break encryption schemes and secure network protocols, control the design of
new security standards, insert vulnerabilities into commercial software, gain privileged access to providers of
network infrastructure, and monitor vast amounts of Internet traffic [24]-]26].

Mass surveillance does not have to be directly implemented by governments. In China, Content Service
Providers (CSPs) and social media platforms are legally compelled to implement mass surveillance and cen-
sorship programmes [27], and in the United Kingdom ISPs are legally obligated to store users’ Internet
browsing history for 12 months [28].

Cryptography can provide some defence. For example, end-to-end encryption ensures that only participants
of a conversation are able to read messages, but often this leaves valuable metadata unprotected. Even if
Eve cannot read the contents of a conversation between Alice and Bob, she may be able to ascertain that
they are communicating, as well as the time, size, or frequency of messages. In 2014 the former director of
both the CIA and NSA famously proclaimed, “we kill people based on metadata” [29]. Also, cryptography
cannot protect information posted to social media websites or other publicly accessible locations.

The lack of privacy on the Internet could be mitigated by anonymity [30], as then collected data cannot be
associated with a specific individual or group. Unfortunately anonymity is an extremely difficult security
property to implement, it involves many tradeoffs, and it may be undesirable or infeasible for many users or
use cases. Tor is one example of software that aims for anonymity, but it suffers from high overhead, low
adoption, and is commonly blocked because of its association with criminal activity.
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Two days ago the police came to me and wanted me to stop working on this. Today they asked me to
delete all the code from GitHub. | have no choice but to obey.

| hope one day I'll live in a country where | have freedom to write any code | like without fearing.
| believe you guys will make great stuff with Network Extensions.

Cheers!

Figure 2: A comment left by the developer of Shadowsocks on the project’s GitHub page,
informing everyone about the discontinuation of their work on the project due to pres-
sure by the Chinese authorities. The comment has since been removed but is available
at https://web.archive.org/web/20150822042959 /https://github.com /shadowsocks/shadowsocks-
i0S/issues/124 /#issuecomment-133630294

Preventing mass surveillance is not a trivial task. It will require the cooperation of governments and legisla-
tion, the dilution of power, and a capable judicial system that will prioritise the protection of civil liberties
and political expression. Research is needed into methods that are used to implement mass surveillance and
technological countermeasures should be developed and incorporated into protocols and standards.

1.3.2 Censorship

Governments and other well-resourced actors around the world also seek to employ censorship—which is often
dependent on surveillance—in order to assert control over the flow of information on the Internet. Motivation
for this may include that such information is politically or socially sensitive, or because it is inconvenient for
those with power.

For example, in China, references to the 1989 Tiananmen Square Massacre are prohibited, and access to inter-
national communication platforms is routinely blocked [31]. A white paper published in 2010 by the Chinese
government prevents people on the Internet from “endangering state security, divulging state secrets, sub-
verting state power and jeopardizing national unification” and “disrupting social order and stability” [32].
Also, beginning in 1996 the Chinese authorities systematically attacked, with the intent to eradicate, the
spiritual Falun Gong movement through a multifaceted propaganda campaign involving enforced ideological
conversion and re-education and reportedly a variety of coercive measures such as arrests, forced labour and
physical torture, sometimes resulting in death [33]. References to the movement are prohibited and actively
censored to this day. The “Great Firewall” of China is perhaps the best known example of Internet censor-
ship by a nation-state [34], but repressive measures are implemented in many places including the United
Kingdom, Turkey, Syria, Iran, and Pakistan [7], [35], [36]. It is clear that free access to information and
the ability to freely redistribute it is a necessary (but not sufficient) condition for holding those with power
accountable.

Legally-mandated censorship of material on the Internet is also common. For example, in the United King-
dom ISPs are ordered to block access to copyrighted materials [7]. A popular proxy tunnel used in China
to bypass censorship was removed from GitHub after police came to the developer’s house and told them to
delete the code and stop work on the project (fig. 2).

Various methods are employed to censor information on the Internet, and various countermeasures and
counter-countermeasures have been developed in the war between censorship and freedom of information. In
order to break this deadlock, significant work needs to be done in understanding existing censorship systems
and countermeasures in terms of their functionality, effectiveness and efficiency. This is difficult since cen-
sorship programs are often highly secretive and users within repressive countries may risk consequences for



using circumvention tools. These obstacles need to be overcome, clear adversarial models must be defined so
that a systematic approach is possible, and generic circumvention frameworks must be developed that can
adapt to changing adversarial conditions.

In general, a widely used, decentralised protocol would be the ideal anti-censorship tool. The intuition for
this is clear: if some information is available from many different sources and the protocol for accessing it
is so widely used that blocking it would involve significant collateral damage, then it becomes much harder
to prevent access to such information than if it was stored on a single server. For example, BitTorrent is
a decentralised file sharing protocol that is widely used for piracy, and yet has withstood significant legal
and technological pressure from governments and copyright holders for a long time. However, a decentralised
model represents a significantly different architecture to the highly centralised nature of the Internet so it is
extremely difficult for such a protocol to displace existing ones today.

1.4 Ethic of Responsibility

Cryptography, like many other technical fields, has an intrinsically political dimension. This stems from
the powerful nature of the tools it provides. Arranging a number of mathematical constructions a certain
way allows someone to configure who can do what, how, and to what. Much of the political and societal
influence of cryptographic work is implicit: by influencing power relations as a byproduct of technical work,
as opposed to overt: through the mechanisms of activism and participatory democracy. The development
of nuclear weapons is a powerful example of implicit politics: they are ultimately purely political, despite
requiring extraordinary technical innovation.

The ethic of responsibility contends that scientists and engineers have an obligation to select work that
promotes the social good, or, at the very least, to refrain from work that damages mankind or the environment
[37]. This is justified by three basic truths: that the work of scientists and engineers transforms society, that
such transformations can be for the better or for the worse, and that technical work is sometimes arcane
enough that people who do such work bring an essential perspective to society. But doesn’t the mathematical
nature of cryptographic work exclude it from ethical and moral questions or obligations? This is the view of
technological optimists who believe that technological innovation is intrinsically a force for good and works
to improve society. If you are a technological optimist, a rosy future flows from the work you do and so
all work is justifiable. After all, if every innovation you contribute to will eventually lead to a net positive
outcome for society or humanity then there is no need to consider ethics. This view is exemplified by Stanley
Fish, a well-known literary theorist and professor, who wrote “don’t confuse your academic obligations with
the obligation to save the world; that’s not your job as an academic” [38]. Perhaps he is able to justify
this belief to himself because literary theory is relatively harmless and in fact the right to write anything
you want is a valuable and protected treasure. However in other fields this viewpoint seems myopic and can
be harmful. The implicit transformative power of technical innovations necessitates ethical considerations.
Just as physicists developed nuclear weapons, it is computer scientists, cryptographers, technologists and
other academics who create the technology used around the world today to implement mass surveillance,
censorship, and to suppress human rights and freedoms. It must also be technologists and academics who
create the tools to fight back [39]. As such this project is not searching for an opportunity. Instead, it is an
ethical responsibility.

2 Project Definition

2.1 Aim and Objectives

The aim of this project is to expand on existing research in censorship resistance by designing and imple-
menting a modular circumvention tool that is comparable with current state of the art censorship resistance
systems.

1. Develop an adversarial model for censorship systems.

2. Research and explore techniques used by existing censorship and anti-censorship systems.



Term Definition

Sensitive flow Network traffic targeted for being offensive or inconvenient, or for
using circumvention tools.

Censor, adversary The party that controls the communication network and is at-
tempting to identify and restrict sensitive flows of information.

Circumvention tool Software designed to prevent censors from identifying or blocking
communications.
Background traffic Non-sensitive flows potentially coexisting with sensitive flows on

the network.

Collateral damage Background traffic adversely affected by a censor’s efforts to con-
trol sensitive flows.

Cover protocol Target network protocol that a circumvention tool may disguise
its traffic as to maximise the collateral damage of being blocked.

Proxy server Party that will forward traffic to the broader Internet on behalf
of a censored client; external to censor-controlled network.

Figure 3: Summary of often-used technical terms. Some of these are taken or adapted from [40].

3. Design and develop a modular framework for implementing obfuscating proxy tunnels, implement at
least one cover protocol with it, and evaluate its effectiveness with respect to existing software.

2.2 Scope

This project focuses solely on censorship resistance for information in-transit over computer networks. We
will explore the landscape of existing censorship and anti-censorship systems, and present and evaluate a
new tool that fits within this. This is a large problem space and so there is a lot that is not in scope. In
particular, detailed discussion and optimisation of proxy performance or evaluation of circumvention tools
against real-world censorship systems is not a goal. Some points that are not in scope may be mentioned in
the context of possible future work.

2.3 Vocabulary

Throughout this report we will use terms like “adversary”, “censor”, and “sensitive flow” repeatedly. To aid
understanding, a summary of important terms is provided in fig. 3.

3 Adversarial Model

Suppose there is a user connected to a network and an adversarial actor who wants to prevent them from
accessing any content that is deemed “sensitive”.

The adversary could censor sensitive traffic at its source using a court order or by exerting other influence
that results in the content being removed or becoming inaccessible. However, they may not have sufficient
power to do so. For example, the content may be hosted by an unsympathetic entity in a different country
that is outside their influence. On the other hand if they do have the ability to censor sensitive material in
this way, the only countermeasure is to have a copy saved and served from elsewhere. Therefore, we will only
consider censorship that happens to information in transit, where there is an on-path adversary (fig. 4) that
is able to inspect, modify, remove and create messages as they travel between network peers*. This requires

41t may be possible to circumvent an adversary’s ability to disrupt a connection, as demonstrated in [41]. The adversary
in response may adapt their capabilities or—since anonymity [30] is not assumed—employ an unmodelled technique such as
cutting off the user’s access entirely or deploy legal, physical, or psychological force.
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Figure 4: An on-path adversary sits between a number of clients and another network.

that the adversary have privileged access to network infrastructure. Governments typically have this via
their influence over domestic ISPs, but the operator of a private network has similar powers.

Suppose there is a set of users that connect to a network through a channel C' that is controlled by a passive or
active adversary. A user u communicates by sending messages m — C, and receiving responses o« C,,
where C',, C C.

1. A passive adversary A, has an oracle O that returns a copy of every message that passes through
C, and has some finite memory M in which it is able to store a set of messages and their timestamps.

2. An active adversary A, is at least as powerful as A, but is also able to

(a) Create messages n or M and send them through the channel to any reachable network host.
(b) Remove any message, preventing it from being routed to its intended destination.

(¢) Modify a message in transit, which is equivalent to removing a message and replacing it.

The goal of either adversary is to infer something about the communication including perhaps the partici-
pants or the network protocol. An active adversary has the ability to induce an edge case that could reveal
extra information. For example actively probing a network host by sending it crafted messages and seeing
its responses can reveal the type of service that it hosts [42], [43]. We assume reasonable computational
time and space bounds on all adversaries. For example, M can’t be too large, and an adversary trying to
categorise some traffic may only have a few hundred milliseconds to make a decision.

There are many possible security properties that can be constructed over these adversaries but we will
consider the following:

1. Confidentiality: An adversary is not able to infer the data contents of any communications. This
property, and other desirable security properties, are fulfilled by many encrypted network protocols
such as TLS 1.3 [11].

2. Authenticity: Communicating parties are able to distinguish between messages sent by the other
party and forged messages inserted by an adversary.

3. Integrity: Communicating parties are able to detect if a message changed in transit, or if one was
removed.

4. P—Indistinguishability: An adversary is not able to distinguish between network traffic that is
disguised as a cover protocol P and background traffic using protocol P.

It is clear that it is possible to achieve perfect P—indistinguishability of protocol messages since cryptographic
ciphertext is indistinguishable from random noise and therefore random sequences are indistinguishable from
each other [44], [45]. So you can take a protocol message and replace all cryptographic ciphertext with your
own resulting in a message that is indistinguishable from the original. This suggests that the optimal strategy
is to select a P that is encrypted to both provide confidentiality, authenticity and integrity, and to maximise
the number of random bits in exchanged messages. Using a real implementation of the selected protocol is



called tunnelling, as opposed to randomisation [46] (where traffic is scrambled so that it is indistinguishable
from random) or mimicry [47] (where packets are encoded such that they appear to belong to a given proto-
col), and has been shown to be more effective than alternatives [48], [49].

However, this strategy ignores other characteristics of protocol traffic such as the time, size, and frequency
of messages. For example, website traffic would typically be dominated by downloads as requests are usually
much smaller than responses, and there would be periods of low activity separated by bursts of traffic as
the user navigates between pages. On the other hand Virtual Private Networks (VPNs) can manifest a wide
range of traffic patterns depending on, for example, whether the user is browsing websites or participating
in a Peer-to-Peer (P2P) file sharing network. Also, different instances of the same protocol can vary between
themselves due to implementation details. We need to understand to what extent real-world censors can and
do use this type of traffic metadata, typical traffic patterns for some set of target protocols, the variability of
these patterns with respect to time and location, and the trade-offs between indistinguishability and protocol
efficiency inherent in conforming to typical traffic patterns. One option that might allow disguised traffic
to blend in better is to masquerade as a protocol that is more bandwidth-symmetric, for example by using
WebSocket Secure (WSS) [50].

Perfect indistinguishability is desirable but not necessary. An important metric to consider is the false-
positive rate of an adversary’s P—detection algorithm, corresponding to the proportion of positive detections
of P that are incorrect. A false-positive rate of 10% means that 1 out of 10 detections correspond to innocent
users that were wrongfully blocked. A high false-positive rate can cause unwanted disruption. Source [48]
suggests “A false-positive rate of 0.2% is likely to still be considered prohibitively high for some censors”. An
adversary must simultaneously balance the false-positive rate with the sensitivity (true-positive rate). A low
sensitivity results in a high proportion of unwanted traffic to be mistakenly allowed through. Thus we can
see that these metrics serve to somewhat constrain adversaries, and suggests that the optimal strategy is to
maximise the false-positive rate, blending in with background traffic, so that it is difficult for an adversary
to ascertain with certainty whether a traffic stream is disguised. This is an intuitive result.

The other attack vector is fingerprinting the endpoints of a network communication. If an adversary sees a
sequence of disguised messages being exchanged between some user and a known proxy server, it can block
the communication without considering any characteristics of the traffic itself. However an adversary has to
first be able to discover this information about the endpoint. Tor, a popular anti-censorship and anonymity
tool, faces a similar issue in maintaining and distributing a set of hidden servers (“bridges”) to which users
can connect without censors being able to know that they are using Tor. It has been shown that discovering
bridges is simple and efficient [51].

Distributing lists of available servers to users without censors discovering them is a challenging problem and
deserves attention, but it is potentially useless if a censor can discover them in other ways. So suppose a
user sets up their own server and tells no one else about it. An adversary subsequently sees traffic belonging
to protocol P being exchanged with this server and so attempts to open a series of connections with it. The
server must respond in a way that is typical of most servers that speak P, while simultaneously proxying
arbitrary traffic for the legitimate user. To achieve this we can rely on Kerckhoffs’ principle [52] which states
that the security of a system must depend not on keeping secret the algorithm, but only the key. If the
user and the server maintain some shared key material, the server could respond with some decoy response
when the shared key is not included in a request. For example, HTTPT [43], a probe-resistant proxy tool,
does exactly this by including a key in HTTPS-encrypted Uniform Resource Locator (URL) paths. Indistin-
guishability now relies also on the confidentiality of this key and on securely distributing it.

We still need to understand typical response patterns for servers that speak a set of protocols so that decoy
responses can emulate them. The proxy server may be able to simply use an existing implementation of
the target protocol and redirect authenticated requests to a separate handler that can proxy connections for
the user. Unauthenticated requests could be responded to with any number of decoy actions, for example
a HTTPS server could return a generic error code, serve a decoy website, or redirect/reverse-proxy to a
different web address.

10



4 Traffic Identification Methods

4.1 Endpoint-Based Filtering

The most basic form of traffic filtering is to make decisions based on the participants of communications.
If a user is exchanging packets with a server or service that is known to host sensitive content, the censor
can safely stop the communication without analysing the type or content of the conversation. This kind of
surface-level analysis of network packets, where information from the application layer of the Open Systems
Interconnection (OSI) model is not considered, is sometimes called Shallow Packet Inspection (SPI). A bene-
fit of endpoint-based filtering is that the probability of collateral damage is strictly bounded: if the endpoint
in question is categorised correctly by the censor then it will not be falsely blocked.

The main piece of identifying information within network packets is the destination IP address. When a
packet is sent from A to B, it takes a “near”-optimal route through some number of network nodes that
forward it according to the IP address it contains. This address is always unencrypted since every on-path
network node requires access to it®. For example, if sci-hub.se is the target of censorship attempts, the
censor can ping the domain repeatedly in order to enumerate a list of IP addresses and subsequently refuse to
route any traffic to them. A commonly used countermeasure to IP address blocking is for either the user or
server to setup a proxy that is unknown to the adversary that will route traffic between them. For example
a user could use a VPN so that the destination of their packets is the VPN server instead of the blocked IP,
or the website host can setup a mirror® so that users can connect to that instead of the original server (until
the censor discovers and blocks the mirror as well).

IP address blocking is made easier by the fact that IPs are included in every network packet, allowing for low
level decisions to be made about individual packets, with little overhead. Domain names on the other hand
are ordinarily confined to application-layer DNS protocol messages, but domain-based filtering of network
traffic is still possible using DNS Hijacking [36] which works by intercepting DNS responses and replacing
the IPs inside them with erroneous ones. The client assumes the returned IP is valid and attempts to open a
connection to it instead of the real one, resulting in either a connection failure or a blocked page notification
being shown”. Requiring valid DNSSEC signatures on responses could detect an attack but won’t prevent it,
and may cause issues with other services due to DNSSEC’s low adoption rate. Performing DNS queries over
an encrypted tunnel, for example using DoT or DoH, is another option and has similar security properties
to any other TLS connection. However at the moment, while these encrypted versions of DNS are popularly
used to secure the connection between users and DNS resolvers, the connection between DNS resolvers and
nameservers remains insecure (see fig. 5). Fortunately, it is easy to route DNS queries through a proxy server
as well.

DNS Hijacking is not the only way to filter connections based on domain names. As mentioned in section 1.2,
when connecting to a service that is hosted inside a CDN, browsers will include the hostname of the service
inside the SNI payload. Since SNI on its own is unencrypted, it can be used to implement network filtering
and censorship [53]. To combat this problem TLS 1.3 introduced ESNI which encrypts the SNI payload
with the CDN’s public key, but recently ESNT has been superseded by ECH [14] which encrypts the entire
TLS Client Hello message. A side effect of ECH is that it makes it much harder to perform TLS client
fingerprinting attacks. However at the moment TLS 1.3 is not universally supported, and some censors
block ESNI® so the same may happen to ECH. The hostname of the service may also be leaked inside the
server’s TLS certificate, but TLS 1.3 encrypts certificates with an ephemeral key preventing Man In The
Middle (MITM) attacks even when a malicious root certificate is trusted by the client. This has caused
headaches for some network security systems [54].

5 Authenticating IP addresses is probably infeasible as it requires that every sender has a keypair associated with their identity
and that every possible on-path network node has access to their public key. Simpler challenges have remained unsolved, for
example the effort to authenticate BGP has had little success.

6Sci-Hub itself hosts a number of mirrors to circumvent censorship (https://www.reddit.com/r/scihub/wiki/index). There
is also a Telegram bot (https://telegram.me/scihubot) that searches and returns research papers as attachments: blocking it
would supposedly require blocking Telegram entirely (unless Telegram themselves block the bot specifically).

7A phishing page could instead be shown, but using a properly pre-loaded HSTS policy should prevent this.

8https://mailarchive.ietf.org/arch/msg/tls/Dae-cukKMqfzm TT4Ksh1Bzlx7ws/

11



— |
) example.com
User device 1—&10 e
l1 I DNS Root
Nameserver
2
/ ’
; DNS Top-Level
DNS Resolver 4 Domain Namesearver
:‘_:: _:H—s
7
\ example.com
Authoritative |
Nameserver

Figure 5: A DNS resolver makes recursive queries to the different types of DNS nameservers to find the re-
sult of a query involving example.com. Adapted from https://www.cloudflare.com/en-gb/learning/dns/dns-
server-types/

Domain fronting. The existence of SNI makes it possible to implement a popular anti-censorship technique
called domain fronting. Suppose there is a CDN that hosts two domains, sci-hub.se and wikileaks.org,
and suppose a client makes a request to the CDN with sci-hub.se in the SNI payload and wikileaks.org
in the HTTP Host header. To an on-path eavesdropper, it will look like the client is attempting to access
sci-hub.se. The CDN will respond with a certificate that is valid for sci-hub.se, the two will perform
a TLS handshake, and then the CDN will see that the Host header points to wikileaks.org and may
subsequently forward the connection there. The wikileaks.org server can then act as a HIT'TP proxy for
arbitrary traffic and thus allow the client to covertly connect to any Internet service. However, this mechanism
violates the protocol specification and some popular cloud service providers now actively block this technique
by verifying that the host specified in the SNI payload matches the one in the HT'TP header. In a variation
of this technique called domainless fronting, the SNI header is left empty and so the fronting may still work
provided that empty SNI fields are ignored by the CDN. Domain fronting is also made slightly less impactful
by the existence of ECH within TLS 1.3, which encrypts the entire TLS Client Hello message including
the SNI field, but the IP address of the server still appears to be the CDN for any watching adversaries.

Domain shadowing is a novel and very recent development that attempts to achieve the same thing that
domain fronting does except it doesn’t rely on an undocumented and in many cases unsupported feature of
CDNs, is supported by most CDNs, can be used to forward traffic to any domain including ones that are not
hosted on a CDN, and can be completely configured by the user without assistance from either the censored
website or any third party [55]. It works by exploiting the fact that CDNs allow users to claim arbitrary
domains as the back-end origin and so by setting the front-end to an allowed domain it’s possible to access
resources of the back-end domain with all “indicators”, including the connecting URL, the SNI of the TLS
connection, and the Host header of the HTTPS request, appear to belong to the allowed domain [56]. The
researchers also describe a technique that combines domain fronting with domain shadowing (DfDs), and
another that allows setting arbitrary unclaimed domains as the front-end (DfDs++) [56].

Both IP address and domain name filtering require a pre-compiled blocklist of “sensitive” targets, so users
who forward their traffic through a proxy server have to avoid the IP address or hostname of the proxy server
ending up on blocklists. This implies the proxy server should make it difficult to discover that it is acting
as a proxy server, instead it should disguise itself as some innocuous service by obfuscating its traffic and
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implementing resistance to active probing attacks. Consideration of the proxy service’s traffic patterns also
plays a part, as will be discussed in section 4.2.

4.2 Traffic Fingerprinting

The success of proxy-based circumvention has forced censors to turn to Deep Packet Inspection (DPI) tech-
niques which can make decisions based on deeper analysis of in-transit network traffic that considers infor-
mation inferred from the application layer of the OSI model, including perhaps “stateful” analysis where
information is compared across multiple packets. For example application-layer content in unencrypted net-
work packets can reveal user-generated keywords like search terms. China’s Great Firewall blocks traffic
containing blacklisted keywords [40]. Once a host has been flagged as a proxy server, its IP or domain may
be blocked so the cost of proxy server redeployment has to be kept low while also maximising the uncertainty
of classifications.

Modern circumvention tools use encryption to avoid revealing data so the goal of DPI engines has also been to
detect traffic from circumvention tools themselves. This includes obvious protocols for tunnelling traffic such
as VPNs which will typically have unique protocol signatures that they do not attempt to hide, but it may
also be possible to detect disguised or obfuscated traffic. As discussed in section 3, this is possible because
of leaked information such as message time, size, and frequency. Meek, a pluggable transport for Tor that
implements domain fronting over HTTPS [57], can be reliably detected with a machine learning model that
uses protocol features including message entropy and timing patterns [48]. Implementation-specific protocol
quirks can also be revealing, for example it’s possible to detect specific implementations of TLS with a TLS
client fingerprinting attack [58]. Tor has been successfully targeted by this technique [40], [59]. A possible
solution to this problem is to use an implementation that is ubiquitous (for example by programmatically
using a headless browser?) or try to randomise or mimic characteristics of another implementation'’, but
these countermeasures do not guarantee perfect P—indistinguishability.

Perfect P—indistinguishability is not necessarily required (yet). The vast majority of current DPI engines use
string matching or regular expression based inference techniques instead of more advanced, more complex,
and more difficult to implement techniques like machine learning [60]-[63]. As such current DPI systems will
need significant upgrades in order to be able to detect more advanced obfuscation techniques, but it is only
a matter of time before this is feasible for censors to implement. A notable constraint on DPI engines is that
they must be able to function in real-time, i.e. analysis must be faster than the traffic rate to be monitored as
otherwise it would result in packet drops. A workaround is to perform faster validation in real-time and store
traffic data to be analysed more thoroughly later. This is what the Great Firewall of China does, for example.

A nation state censor is able to use information gathered from an entire population’s traffic patterns in order to
make deductions. If a proxy server that is disguised as a website usually gets very few users who each exchange
only a little data with it relatively infrequently, then a small set of users who exchange disproportionately
large volumes of traffic with it will be suspicious. One possible workaround is to have a “decoy” service that
reverse-proxies to some high-volume web service, or host such a service directly and build a community of
legitimate users. Decoy services are discussed further in section 5.1.1. Nowadays cloud-hosted CDNs are
popular meaning that it is quite common for large amounts of traffic to be exchanged with a relatively small
set of hosts belonging to major cloud providers, so a proxy service hosted on a CDNs may find it easier to
blend in. In this case the domain name of the service could still potentially be a uniquely trackable identifier
for traffic to the proxy service specifically, so either TLS 1.3 or domain fronting/shadowing are necessary to
hide it (as discussed in section 4.1).

9Selenium is an umbrella project encapsulating a variety of tools and libraries enabling web browser automation:
https://github.com/SeleniumHQ /selenium
10y TLS is a library for substituting TLS Client Hello messages: https://github.com/refraction-networking/utls
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Figure 6: A proxy server acts as an innocent looking messenger for sensitive traffic that could be censored.
For example, the proxy may appear to be a HTTPS service.

5 Network Traffic Obfuscation

Censorship circumvention techniques rely (roughly) on prozying and obfuscation to defeat endpoint-based
and in-transit censorship methods, respectively. Proxying will present an innocuous or unknown network
destination to an adversary, whereas obfuscation refers to any measure that hides the nature of the traffic
itself, including hiding the nature of the service itself from passive and active attackers. Figure 6 shows how
these techniques work together.

5.1 Proxying

Proxying traffic refers to any kind of situation where a defined intermediary or set of intermediaries handle
the forwarding of traffic for a user or set of users. In the context of censorship circumvention, there are a
number of commonly used solutions.

Virtual Private Networks are any kind of technology that can encapsulate and forward network traffic
data over another network. Typically there is a VPN client’s traffic being forwarded to the same network as
a VPN server. Commonly used VPN solutions include OpenVPN, IPsec, and more recently WireGuard, all
of which are easily identifiable by DPI engines. They are usually encrypted and serve as a relatively simple
way to open secure, persistent network tunnels between networks. VPNs have legitimate uses, for example
to allow employees of a company to securely connect to the company intranet from an outside network, but
they are also commonly used to bypass regional restrictions and evade censorship.

The Onion Router is a proxy tool specifically focused on anonymity. It achieves this by routing traffic
through the Tor network, a 3-layer deep mesh of network nodes composed of an entry/guard relay, a middle
relay, and an exit relay, through to the Internet. This is a Tor circuit. Each relay knows only the identity of
neighbouring nodes, so for example the entry relay knows only the identity of the user and the middle relay,
and Internet services know only the identity of the exit relay. Also, data is encrypted three times, once for
each node in the route, giving the scheme its name: onion routing. In this way, assuming that the different
layers of the network are not collaborating, it should not be possible for any individual participant (except the
user) to ascertain which users are connecting to which services [64], [65]. There are many published attacks
against the Tor network targeting different aspects of its security model [59], [66]-[68]. Tor is detectable by
DPI engines, but it comes with built in obfuscation modules called pluggable transports that can be used to
potentially side-step local or national firewalls that target Tor traffic. Onion services are Tor web services
that are only accessible through the Tor network, increasing the depth of a Tor circuit to 6, and providing
anonymity to both the client and server. Since you are unable to ascertain the public IP address of the server
it is much harder to take down and censor an onion service than it is a clear-net website.
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V2Ray is a framework for developing and deploying proxy modules'!. It is composed of a set of proxy

protocols, network transport protocols, and an obfuscation layer!?. It is designed to be extremely modular
and flexible, includes support for many protocols, and allows users to compose, chain, and deploy multiple
instances of them. However, it also includes support for weak and insecure configurations, and there are a
number of published attacks against it!3.

5.1.1 Active Probing Resistance

An active adversary is able to directly probe and open connections with a proxy server to gain more infor-
mation about services running on it. For example if you attempt to speak the Tor protocol to a server and
it responds in a way that indicates that it understands, you can be confident that the server is acting as
a relay. For this reason a proxy server that wants resistance to active probing attacks must appear to be
an innocuous decoy service to any attacker that attempts to probe it. This can be achieved by relying on
Kerckhoffs’s principle [52], as mentioned in section 3. Essentially, if a client is not able to prove knowledge
of a shared secret then the server will not behave like a proxy. This is shown in fig. 7.

But what kind of decoy response is acceptable or ideal? There are many possibilities and they vary depending
on the cover protocol that is being used. A HTTPS server could respond with a HTTP redirect, an error,
or a genuine website that is hosted from the same server or reverse proxied from elsewhere. On the other
hand a raw TLS server could behave in a vast number of different ways depending on the service it runs, so
it’s recommended to simply read infinitely, with an unlimited timeout, on any unauthenticated connection
in order to avoid an adversary being able to trigger a protocol edge case, and to prevent fingerprinting based
on specific timeout values [69].

HTTPT is a proxy that is designed to hide behind HTTPS servers to resist active probing attacks [43]. It
acts as a reverse proxy with multiple backends where users authenticate by specifying a pre-shared password
in the URL of the original HTTP request. Unauthenticated requests are forwarded to some conventional
webserver like Apache or Nginx that serves a decoy, and authenticated requests are forwarded to the proxy
handler. In their report they suggest the following options for a decoy:

1. Deploy the proxy alongside an existing webservice and forward unauthenticated requests there.
2. Reverse proxy unauthenticated traffic to some other external webservice.

3. Return an error response. They say, “As of June 2020 over 21% of the servers probed responded with
400 Bad Request, 11.19% responded with 403 Forbidden, 8.62% with 404 Not Found, and 2.91%
with 401 Unauthorized.”

4. Content could be copied from other websites. This would avoid latency issues with reverse proxies but
could run into copyright problems.

Hhttps://github.com/v2fly /v2ray-core
2https://github.com/netdpeople/bbs/issues/36
L3https://github.com/netdpeople/bbs/issues/36#tissuecomment-644929739
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5. Restrict access by requiring bogus authentication, for example by requiring HTTP authorisation and
not accepting any passwords as valid.

Note that these are mostly applicable to proxies disguised as HT'TPS services.

5.2 Obfuscation

There are many different techniques for obfuscating network traffic in terms of its appearance in-transit, but
they can broadly be split into three categories.

5.2.1 Randomisation

Randomising obfuscators work by scrambling messages to make transmitted bits indistinguishable from ran-
dom. The technique is sometimes described as trying to make network flows “look like nothing” by totally
removing their signature. This is often achieved by applying a stream cipher to every byte, but since stream
ciphers on their own don’t provide strong authenticity and confidentiality guarantees, they’re typically ap-
plied on top of moden encryption methods that do. Examples of randomising obfuscators are Dust and
ScrambleSuit.

Randomisers are reliably detectable by measuring the entropy content H(X) of the set of bytes in the traffic
flow, where

H(X) = - 3 P(x) log,y(P(x))

zeX

and P(x) is the measured probability of seeing the byte = in the sequence. Since randomisers will have a
uniform probability distribution, their entropy will be maximised and so

H(X) = log,(256)| X| = 8| X]|

which should be consistently higher than any other protocol, especially in the first packet payload where many
protocols put headers and other structured, unencrypted data. Randomisers are also sometimes detectable
by testing simple heuristics like message length [48]. In addition, the lack of a fingerprint is itself a fingerprint
and so this technique fails against whitelist-based adversaries who block any unrecognised traffic flow [40].

5.2.2 Mimicry

To address whitelisting censors, mimicry-based methods attempt to evade censorship by making packet pay-
loads look like they belong to a whitelisted protocol instead of a random stream. It can be roughly thought
of as a form of steganography against a DPI adversary. A common example is to make payloads looks like
HTTP, which is rarely blocked due to its ubiquity. Protocol mimicry in the context of censorship evasion
originates with the Tor project prepending HTTP headers to Tor packets. Unfortunately mimicry-based
obfuscators have prohibitively poor performance. [40]

A simple but flexible approach to mimicry is Format-Transforming Encryption (FTE), a type of symmetric-
key cryptography where the user specifies a regular-ezpression that the output ciphertext will conform to [47],
[70]. Since DPI also use regular expressions, it can sometimes be possible to precisely force misclassification.
However, since mimicry-based obfuscators try to mimic a cover protocol without actually using a valid
implementation of it, the syntax and semantics of messages originating from mimicry systems can deviate
substantially from that of messages conforming to the protocol. For example a proxy server that uses a
mimicry obfuscator may produce a message that looks like a HTTP GET after having just received a HTTP GET,
thereby totally violating the HTTP specification [40]. It has been shown that basic entropy-based tests as
well as tests on protocol semantics are able to reliably detect FTE obfuscators [48]. Also, [49] has shown that
mimicry-based obfuscation tools “completely fail to achieve unobservability” since it is infeasible to mimic
all aspects of the target protocol’s implementations.
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Figure 8: A FortiGate DPI engine acts as a router, sitting in-between a client device and a wider network.
It is configured to block access to proxy tools and any unrecognised protocols.

5.2.3 Tunnelling

Tunnelling takes mimicry a step further by using an actual implementation of the cover protocol to create
messages. Tunnelling on its own is not a new concept, many existing protocols are simply instances of one
protocol being encapsulated by another. For example, HT'TPS is HT'TP over TLS, DoH is DNS over HT'TPS,
and anything over a VPN is technically being tunnelled. The difference in our case is that the tunnelling is
specifically used to hide the fact that a circumvention tool is being used.

There are challenges in implementing tunnelling obfuscators in a way that preserves P—indistinguishability.
For example, HTTPS is a ubiquitous protocol that is commonly used for high downstream bandwidth and
low upstream bandwidth situations, whereas someone using Tor may be torrenting or uploading a large file.
Also a carrier protocol may not support all the features required to allow tunnelling some other protocol.
Functionality has to be achieved while ensuring suitably high performance. There could also be unintended
side channels, for example it’s sometimes possible to identify a specific implementation of TLS using a
client fingerprinting attack. Obfuscation that implement tunnelling have to match the behaviour of common
implementations and usage of the cover protocol [40]. Despite these challenges, tunnelling is by far the most
powerful obfuscation technique out of those we have discussed [49].

5.3 Evaluation

In this experiment we have a very simple setup (fig. 8) where a client device has access to a wider network
through a FortiGate router with a commercial DPI engine running on it. The DPI engine is configured to
block access to proxy tools and any unrecognised protocols.

Traffic Source Result Detection
Tor Blocked Tor

obfs4 Blocked Tor

Meek Failed HTTPS, CDN
OpenVPN (UDP) Blocked OpenVPN
WireGuard Blocked WireGuard
V2Ray Blocked Unknown

Figure 9: Detection summary for some commonly used proxies and network traffic obfuscation tools.

Tor itself without any obfuscators was blocked as expected, whereas obfs4 (randomiser) was detected as Tor,
not unknown. Meek failed to connect to the Tor network but there were no explicit blocking events in the
DPI logs suggesting that none of the tried CDNs support domain fronting any more. This theory is supported
by the fact that the DPI logs showed successful connections to Amazon S3, Microsoft Azure and some other
CDNs, but with only a few kB of data transferred. OpenVPN and WireGuard were detected correctly and
blocked, as expected. Our V2Ray setup used the recommended configuration options'* and was blocked as

Mhttps: //www.v2ray.com/en/welcome/start.html
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Figure 10: High-level overview of Rosen’s architecture. Applications interface with a local proxy client that
tunnels traffic through a cover protocol to the server.

the DPI engine did not recognise the used protocol. It’s possible that a different configuration may have
allowed the traffic to pass through.

6 Rosen Proxy Tunnel

5 116

Rosen'® is my attempt at designing and implementing a censorship circumvention proxy tool'®. An outline

of its architecture is expressed in fig. 10.

6.1 Design Goals
1. P-Indistinguishability, Confidentiality, Authenticity and Integrity, as defined in section 3.

2. Flexibility. It should be relatively easy to add support for another cover protocol or configure the
behaviour of an existing protocol to adapt to changing adversarial conditions. Censorship techniques
and countermeasures are constantly evolving and so this flexibility is necessary in order to maintain
functionality.

3. Compatibility. It should be possible to route most application traffic through the proxy.

4. Simplicity. The protocol should be conceptually simple and the software should be easy to use. This
allows users to deploy proxy servers easily and use the software in a safe manner wile avoiding pitfalls.

5. Performance. There should be a low space and time overhead compared to not using the proxy.

6. Stability. The program should be run stably for sustained periods of time under all normal operating
conditions.

6.2 Cover Protocols

Based on our design goals and discussion in previous sections, it’s clear that good choices for cover protocols
are those that are encrypted and ubiquitous. An encrypted protocol will typically be mostly made up of
ciphertext which, due to its indistinguishability from random, can be safely replaced with our own ciphertext.
In addition, many modern encrypted protocols inherently provide properties 1 to 3 from section 3. Ubiquity
is desirable in order to maximise collateral damage from either an adversary attempting to block the cover
protocol or falsely categorising a proportion of background traffic. Some candidate protocols include:

15Source code is available at https://github.com/awnumar/rosen
16Rosen is licensed under the BSD Zero Clause License, an unconditional, public-domain-equivalent license. The license text
can be found here: https://github.com/awnumar /rosen/blob/main/LICENSE
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Figure 11: Rosen’s message multiplexer/demultiplexer (red) handles the communication between application
sockets and a proxy client module, or between Internet hosts and a proxy server module, depending on
whether Rosen is acting as a proxy client or server.

1. TLS

2. HTTPS

3. WSS

4. Secure Shell (SSH)

At the time of writing only HTTPS is supported. It was chosen mainly for its ubiquity.

6.3 Architecture and Implementation

Rosen’s architecture is constrained by the design goals. In particular, flexibility and compatibility necessitate
modularity. A proxy client instance needs to communicate with various client applications and forward their
traffic to a server instance. On the other hand server instances need to coordinate conversations between
the client application and various Internet hosts. So, on either side we have data streams being multiplexed
between a single channel and an arbitrary number of sockets. The multiplexzer/demultiplexzer (fig. 11) is the
core component that facilitates this on both the client and the server. It aggregates messages from many
external sockets into a single binary message blob, and can separate such blobs, routing each message to the
correct destination. This scheme facilitates the highly-threaded architecture of Rosen where each socket has
two coroutines attached to it, one for reading and another for writing.

The application-proxy interface (which handles communication between client programs and the proxy) and
the proxy client and server endpoint modules (which transport the multiplexed message blobs between each
other over the cover protocol) use Go’s interface primitives and a standard message format to facilitate
modularity. It will be easier to explain how Rosen works with an example. Suppose we have a setup where
the client side starts a Socket Secure (SOCKS) server to interface with user-space applications, and the proxy
endpoint modules are using HTTPS as the cover protocol. See fig. 10 for a visual guide.

Configuration. Rosen includes an easy-to use configuration wizard that guides users through the different
options. An example is shown in fig. 12. The quiz is configured by the developer of the cover protocol
implementation and is fully specified using code. Once a configuration file has been created, it is copied to
both the client and server devices. It also contains a secret 256 bit key that the client can use to authenticate
with the server.

19



$ ./rosen —configure

Which protocol do you want to use?

Choose from {https}

> https

Enter the address that the client will use to connect to the proxy server.
It must start with https://

> https://example.com

Enter the public hostname that your server will be accessible from.
This will be used for TLS certificate provisioning.

> example.com

Enter an email for LetsEncrypt registration .

This will be used when provisioning a TLS certificate .

> anon@example .com

Should the LetsEncrypt CA root certificate be pinned by the client? (yes/no)
> yes

Set the maximum TLS version that should be used, 1.2 or 1.3
> 1.3

Config file path: /mnt/c/Users/Awn/src/rosen/7PrXt6N1.json

Figure 12: Rosen implements an easy-to-use wizard for generating a configuration file.

The configuration wizard also asks users whether the client should pin LetsEncrypt’s root certificate. There
are many CAs in existence and they all exist in the exact same trust pool, meaning every single CA in
a client’s trust pool must not be malicious or else authenticity and thus confidentiality is broken. Rosen
implements automatic TLS certificate issuance and renewal with LetsEncrypt so it makes sense to limit the
client’s trust pool to only this CA.

Application-Proxy Interface. A client opens a connection to a remote host through the proxy by con-
necting to the SOCKS server and passing it an address and connection type. Rosen will associate a unique
identifier with this socket and attach two coroutines to it, one perpetually reads and the other writes. At
this point the connection is “registered” on the client side and we are ready to inform the server about it.

Server Connection Registration. A message containing instructions to open a new connection is for-
warded to the server. The message format looks like:

type Packet struct {
// ID of the connection that this packet belongs to.
ID string

// Network address of the remote Internet host.
Dest Endpoint

// This packet either:

// 1is an instruction to open a new connection OR
// contains data for a connection OR

// 1is an instruction to close the connection.
Type PacketType

Data [] byte

and so an open connection instruction would be something like:

Packet {
ID: ”?connection_identifier”,
Dest: Endpoint{
Network: "tcp”,
Address: 72.3.5.7:4437,

b
Type: Open,
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When the server receives this message it opens a new socket and registers it in its local multiplexer with the
same connection identifier. This way both client and server agree on connection mappings.

Proxying. Suppose there are a set of sockets on the client side corresponding to open connections. When-
ever data arrives on any of them, it’s packaged into a Packet object and forwarded to the multiplexer. The
aggregate queue of these messages is repeatedly serialised and forwarded to client-side proxy endpoint which
handles the forwarding of these messages to the server, which then demultiplexes and forwards each individ-
ual message to the right socket. The same thing happens in reverse on the server side. When a connection is
closed any resources related to it are cleaned up and a notification is sent to the other proxy endpoint which
then does the same. Any subsequent messages referring to non-existent connections are ignored.

With regards to the HTTPS cover protocol implementation specifically, the main challenge is handling the
fact that HT'TP is an asymmetric protocol where the client is able to make requests at any point in order
to send data, but the server can only send data to the client inside the HT'TP response. This necessitates
regular polling by the client to allow the server to send back any waiting data. The current implementation
waits a short, random interval of time between polls, unlike Meek which uses a regular polling pattern with
a linear decay of the polling frequency if no data is transferred.

Authentication. The HTTPS cover protocol implementation uses a simple authentication mechanism:
the key is included as a HTTP header inside each request. Care is taken to limit the impact of timing side
channels by performing the validation of the key in constant time. This was the obvious and straightforward
authentication mechanism and is similar to what other proxy tools such as HT'TPT do. However perhaps a
more flexible and secure method would be to use a fast authenticated symmetric-key cipher on the payload
before transmitting it. This way, the server will only be able to decrypt the payload if the client encrypted
and authenticated it with the correct key. Benefits of this approach include that the key material does
not have to be sent alongside each message payload, there is two-way authentication instead of just client-
authentication'”, and the scheme is protocol-agnostic and so it’s easily expanded to other cover protocol
implementations. This alternative authentication mechanism will likely be added in a later version. The key
that the client and server share is automatically placed into the configuration file by the configuration wizard
and so distributing this key is as simple as sharing this file.

Decoy. Currently Rosen allows a configurable decoy handler to be substituted into the proxy. This is made
possible by Go’s http.Handler that allows any function that looks like

func hander (w ResponseWriter, r xRequest) {}

to handle incoming HTTP requests. Here r is a pointer to the full request data and w allows the function to
write back its response. The default at the moment is a simple static file server that serves some files that
are embedded into the binary at compile time. Eventually though support for a set of configurable decoy
modules is planned, similar to those mentioned in section 5.1.1.

Rosen is implemented using the Go programming language!® for a number of reasons:

e Go is relatively easy to read and write, resulting in a fast development cycle and reducing the barrier
of entry for contributors.

e It has an extensive standard library that includes popular production-ready implementations of needed
cover protocols such as HTTPS'®, TLS??, SSH?!, and there exist good libraries for others such as
WSS22,

17Currently the only way for the client to authenticate the server is using the server’s TLS certificate.
8https://golang.org/doc/

https://golang.org/pkg/net /http

20https://golang.org/pkg/crypto/tls

2lhttps:/ /pkg.go.dev/golang.org/x/crypto/ssh

22https://github.com/gorilla/websocket
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e It multiplexes many lightweight coroutines over a number of system threads, and uses channels to
share memory by communicating®®. This model makes it possible to have potentially thousands of
independent routines that are easily synchronised.

e Many different operating systems and architectures are natively supported. Cross compilation is hassle-
free and the compiler produces static binaries, making it easy to quickly deploy applications without
worrying about environment dependencies.

6.4 Evaluation

P-Indistinguishability. Figure 13 shows the results of running Rosen against a set of state-of-the-art
commercial and open source DPI engines. It was also tested behind the Great Firewall in China by an
anonymous person who volunteered after seeing my post?* introducing Rosen. Of course only HTTPS is
evaluated here since it is currently the only supported cover protocol.

DPI Engine Result Detection
nDPI (Open Source) Allowed HTTPS
Palo Alto Networks Allowed HTTPS
Fortinet FortiGate Allowed HTTPS
Great Firewall (China) Allowed N/A

Figure 13: Detection summary for Rosen traffic by various different DPI engines.

Rosen has an “unfair” advantage in these tests since it is totally new and unknown to any adversaries.
Ideally it should be attacked specifically by an adversary that has access to the source code. In terms of
distinguishing attack vectors against Rosen, a few come to mind:

e The HTTPS cover protocol implementation has very frequent pings to the server to poll for waiting
data. When there is no data this results in many short requests and responses, or otherwise they can
be very large. HT'TP typically has infrequent messages with bursts of activity, and download sizes are
much larger than uploads. This may not at all hold true for arbitrary traffic being routed through the
proxy. An alternative cover protocol such as WSS would blend in better in this regard, and using some
kind of randomised padding scheme would reduce the information leaked.

e Content served on the decoy handler may not align with observed traffic patterns for users of the proxy
service. For example if the decoy is a basic static site with not much data, and users connecting to
the proxy are exchanging disproportionately large volumes of data with the server, this may cause
suspicion. For this reason the decoy handler should be (ideally) a legitimate, high-traffic volume service
with many users, so that large volumes of exchanged proxy data blend in.

e TLS client fingerprinting attacks may be able to specifically identify Rosen based on the contents of
the Client Hello message, assuming ECH is not used. However, the TLS implementation used is that
of the Go standard library and care is taken to stick to defaults wherever possible. For this reason
it seems likely that an adversary would only be able to narrow the implementation down to Go, but
not to Rosen specifically, using this method. This may be good enough against some censors but not
others, depending on their tolerance for collateral damage. For example, Iran is known to care very
little about false positives. There exist tools to extract TLS fingerprints from traffic dumps?®, and there
are libraries that can allow us to mimic and randomise these fingerprints?6.

23https://golang.org/doc/codewalk/sharemem

24https:/ /spacetime.dev/rosen-censorship-resistant-proxy-tunnel
25https:/ /tlsfingerprint.io/pcap
26https://github.com/refraction-networking/utls
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It’s not currently clear how many of these can currently be feasibly targeted or how expensive such attacks
would be. It’s also not clear what tolerances real-world censors have with respect to collateral damage et al.
Targeted academic testing of Rosen would be a good start to better understand its resistance to distinguishing
attacks. In particular, finding out the false-positive rate of the best attack is extremely valuable information.

Confidentiality, Authenticity and Integrity. Rosen’s implementation of the HTTPS cover protocol re-
lies on TLS to provide these security properties. The main attack vector here is in validating the authenticity
of the server. If an attacker manages to get access to a valid certificate for the domain being used they will
be able to perform a MITM attack. This is unlikely in general and can be made even less likely if the user
enables the pinning of LetsEncrypt’s root certificate. However, supposing an attack does happen, the client
will send the adversary a request containing the authentication key that the client and server share, and then
the attacker will be able to make their own request to the server with this key to confirm that it’s acting as a
proxy, which breaks P—indistinguishability. In addition, if the adversary simply monitors the proxy session,
they will be able to see the client’s traffic data and maybe modify it if it’s not itself encrypted.

As discussed in section 6.3, a partial solution is to use an authenticated symmetric encryption scheme to
protect every payload that’s sent between the proxy endpoints. This provides strong authenticity guarantees
for both the client and server and avoids sending the key over the network. If an MITM attack happens,
confidentiality and authenticity are preserved, although integrity may not be due to replay attacks. P—
indistinguishability may also be broken in this case.

Flexibility. While Rosen’s design was heavily guided by this requirement, it’s difficult to evaluate at the
moment whether it succeeded at implementing modularity well since there is only a single cover protocol
implemented. There is an implementation of WSS in progress so it will be easier to answer this question
once that is complete.

Compatibility. Rosen implements a SOCKS5 server to allow client applications access to the proxy tunnel.
SOCKS is a very popular protocol for this purpose and is supported by many applications. TUN support is
planned for the future to allow users to easily route all application traffic through the proxy server, including
traffic from applications that do not support SOCKS. There are tools that allow the creation of a virtual
network interface that forwards all traffic through a SOCKS server?”.

Simplicity. Rosen has been designed to be very simple and easy to configure, use, deploy, and develop. A
few design choices exemplify this:

e Go produces static binaries that eliminate dependencies on any system libraries or other environment
specifics except the kernel and architecture, and cross-compilation is trivial. This allows extremely
fast and simple deployment. The HTTPS cover protocol’s decoy handler uses Go’s embed directive to
embed the static site content into the binary itself, further simplifying the deployment process.

e Configuration, including configuring the configuration wizard itself, is very easy. The wizard explains
options and what they mean, checks the inputted values for errors, generates a cryptographically-secure
32 byte key, and creates the configuration file.

e Commands to run Rosen are very simple. There are only a few flags, one to launch the configuration
wizard, a mode flag that launches Rosen in either client or server mode, a config flag that specifies the
configuration file, and an option to change the port that the SOCKS server runs on.

e Go is a simple language with a limited set of primitives that compose well. It is easy to read and write,
simplifying the process for a new contributor to understand and expand the codebase.

e Care is taken to make relatively complex tasks as painless as possible. For example, issuance and
renewal of TLS certs is completely automated, as long as the server is accessible from the domain name
specified in the configuration file.

2Thttps://github.com/ambrop72/badvpn/wiki/Tun2socks
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Performance. Figure 14 shows Rosen’s HTTPS cover protocol implementation’s bandwidth and latency
characteristics versus a direct connection.

Proxy Avg. Latency Avg. Download Speed | Avg. Upload Speed
None 19.7 ms 367.6 Mbps 36.73 Mbps

Rosen HTTPS 47.7 ms 196.6 Mbps 20.5 Mbps
Difference (%) 242.1 % 53.5 % 55.8 %

Figure 14: Summary of testing Rosen’s HTTPS cover protocol implementation’s bandwidth and latency char-
acteristics versus a direct connection. Results are the average of three tests, collected using speedtest.net

Overall these results aren’t terrible but I am not totally happy with them. Work is needed to understand
what bottlenecks there are, where they are, and how they can be reduced. Other cover protocols may perform
significantly better due to HTTPS’s inherent drawbacks in terms of its asymmetric nature. There is also
sometimes an issue with testing upload speeds where the results are erratic, vary wildly, and sometimes are
0 Mbps. This may be an artefact of the way speed testing websites implement tests, or an issue with Rosen.
The issue appears less frequently on speedtest.net if you set it to test using only a single stream instead
of multiple.

Stability. At the time of writing there is currently an intermittent bug in Rosen’s HTTPS cover protocol
implementation that causes the server to crash. This is a critical issue and I am working to diagnose the root
cause. This issue has been reported by an anonymous tester, and I have managed to reproduce it myself in
some circumstances.

7 Future Work

e TUN support will allow users to route all traffic through the proxy tunnel, including traffic belonging
to applications that do not support SOCKS.

e Implement the other cover protocols mentioned in section 6.2, starting with WSS as it is closely related
to HTTPS and has much more appealing typical traffic and performance characteristics.

e Testing of bottlenecks affecting Rosen’s latency and bandwidth will help identify how to improve these
features.

e Find and fix the root cause of server crashes.

e Testing of Rosen by many people over a longer time is essential to understanding its effectiveness. Also,
academic analysis of distinguishing attacks against it are necessary, with a focus on the false-positive
rate of any attacks.

e Better understanding of censors, their capabilities, and tolerances for collateral damage is necessary to
inform optimal trade-offs decisions between P—indistinguishability and usability.

e Support multiple clients per server. Potentially support multiple protocols per server.
e Implement the alternative authentication mechanism discussed in sections 6.3 and 6.4.

e Develop a set of configurable, modular, and reusable decoy handlers.
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8 Conclusion

The goal of this project was to model adversarial conditions relevant to anti-censorship systems, explore the
existing body of work in this field, and use this knowledge to design, develop, test and evaluate a modular
proxy framework.

We started off by introducing the importance of information, how the Internet works and the protocols that
it relies on, vulnerabilities in these protocols, how they can be exploited, and some ways that these exploits
can be mitigated. We go over some historical and modern-day examples of Internet exploitation by powerful
actors that use it to suppress human rights and implement totalitarian measures like mass surveillance and
censorship.

A formal but not rigorous adversarial model is introduced and used to reason about adversarial capabilities
and trade-offs. Some security properties are also introduced. In particular we define P—indistinguishability
with respect to different adversarial capabilities. Various methods of identifying and fingerprinting traffic
are explained, as well as different techniques to obfuscate this information. A number of existing tools are
explored and then tested against a state-of-the-art commercial DPI engine. None of them were able to bypass
the DPI engine and successfully open a connection.

Rosen is introduced and explained, including its main goals, key features, design choices, and it’s then tested
in terms of its P—indistinguishability and performance, and informally evaluated with respect to its other
goals. It successfully manages to bypass every DPI engine it was tested against, and successfully opened a
connection from behind the Great Firewall in China. Finally we discuss possible future work.
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10 Appendix

10.1 Acronyms

BGP Border Gateway Protocol

BGPsec BGP Security

CA Certificate Authority

CAA DNS Certification Authority Authorization
CDN Content Delivery Network

CSP Content Service Provider

DANE DNS-based Authentication of Named Enti-
ties

DNS Domain Name System
DNSSEC DNS Security Extensions
DoH DNS over HTTPS

DoS Denial-of-Service

DoT DNS over TLS

DPI Deep Packet Inspection

ECH Encrypted Client Hello

ESNI Encrypted SNI

FTE Format-Transforming Encryption
HSTS HTTP Strict Transport Security
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure

IoT Internet of Things

ICMP Internet Control Message Protocol
IP Internet Protocol

ISP Internet Service Provider

MITM Man In The Middle

OSI Open Systems Interconnection
P2P Peer-to-Peer

SINI Server Name Indication

SOCKS Socket Secure

SPI Shallow Packet Inspection

SSH Secure Shell
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TCP Transmission Control Protocol
TLD Top-Level Domain

TLS Transport Layer Security
TOFU Trust On First Use

URL Uniform Resource Locator
VPN Virtual Private Network
WSS WebSocket Secure
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