
Minimal Surface Theory:

The Mathematics of Soap Films

Awn Umar

BSc Mathematics and Computer Science

University of Bristol

May 22, 2020

1 Introduction 2

2 Curves 2

3 Surfaces 6
3.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Monge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Spherical . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Mean Curvature . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Catenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Possibility Space . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Helicoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Minimal Surfaces 23
4.1 Soap Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Isothermal Coordinates . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Complex Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 The Weierstrass-Enneper Representation . . . . . . . . . . . . . . 31
4.5 The Björling Problem . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Exotic Minimal Surfaces 42

Bibliography 45

1



1 Introduction

A soap film is represented by a kind of surface that has zero average “curvature”
at all points: a minimal surface. We begin by introducing the foundational
mathematics of differential geometry followed by what it means for a surface
to be minimal. We explore the connection between soap films and minimal
surfaces and then see how complex analysis can be used to create them. Finally
we render some examples using Maple.

This project relies extensively on [Opr00], [HD10] and [Mor09], as well as others.
A full list of sources is given in the bibliography. I could not have produced this
work without the help of Dr Ivor McGillivray whose patient explanations were
invaluable to my understanding.

2 Curves

Definition 2.1. A curve α is a 1-dimensional object in n-dimensional space.
We will focus on curves in 3 dimensions. We can represent a curve as a
differentiable map:

α : R ⊇ I → R3

t 7→ (x(t), y(t), z(t))

where I is an interval in the real line and each of x, y, z are differentiable over
I.

Definition 2.2. A curve α is regular if ∀ t ∈ I,

α′(t) =
dα

dt
(t) 6= 0

Definition 2.3. The tangent vector T of a regular curve is the unit velocity
at that point:

T =
α′(t)

|α′(t)|
If α is not regular then ∃ t ∈ I such that α′(t) = 0 and so T is undefined.

Definition 2.4. The arc length s along the curve α between t = a and t = b
is

s =

∫ b

a

|α′(t)| dt

=

∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt
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Then by the fundamental theorem of calculus,

ds

dt
= |α′(t)| =

√
x′(t)2 + y′(t)2 + z′(t)2

Definition 2.5. A curve α(s) is parametrised by arc length if

s =

∫ s

0

|α′(t)| dt

Such a parametrisation has the useful property that the length of α(s) for a ≤
s ≤ b is simply b− a. We can see that

s =

∫ s

0

|α′(t)| dt ⇐⇒ |α′(t)| = ds

dt
= 1

Imagine α is describing the position of a particle. Then α is parametrised by
arc length precisely when the particle is moving at unit speed.

Definition 2.6. The curvature κ of a curve is

κ =
∣∣∣dT
ds

∣∣∣ =
∣∣∣dT
dt

dt

ds

∣∣∣ =
∣∣∣ α′′(t)|α′(t)|

∣∣∣
This gives the rate of change of the angle which neighbouring tangents make
with the tangent vector at some point t.

If α is parametrised by arc length this simplifies to

κ =
∣∣∣dT
dt

∣∣∣ = |α′′(t)|

Lemma 2.7. The curvature vector is orthogonal to the tangent vector.

Proof. Since T is a unit vector, we have that T · T = 1. Therefore,

d

ds
(T · T ) = 0 =⇒ T · T ′ = 0

Definition 2.8. The radius of curvature R is

R =
1

κ(t)

This gives the radius of the osculating circle on α at some t. Equivalently, it is
the radius of the circular arc that best approximates α at t.

If κ is large, the curve is very tight and so R is small. Conversely if κ is small,
the curve is gradual and so R is big.
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Example 2.9. Consider the curve given by

α(t) =
(1

2
,

1

4
cos t,

1

4
sin t

)
for t ∈ R. This is a circle of radius 1/4 in the yz-plane at x = 1/2. We compute

α′(t) =
(

0,−1

4
sin t,−1

4
cos t

)
=⇒ |α′(t)| = 1

4
=⇒ T = (0,− sin t,− cos t)

and so α is regular and is not parametrised by arc length. The curvature is

dT

ds
= (0,−4 cos t, 4 sin t) =⇒ κ = 4

Then the radius of curvature R = 1/4, which is precisely the radius of the circle
described by α.

The arc length of α is given by

s =

∫ b

a

|α′(t)| dt

=

∫ b

a

1

4
dt

=
t

4

∣∣∣b
a

If the input increases by 1, the corresponding change to the output is

t

4

∣∣∣a+1

a
=
a+ 1

4
− a

4
=

1

4
We can reparametrise α by arc length by accounting for this difference:

αs(t) =
(1

2
,

1

4
cos 4t,

1

4
sin 4t

)
=⇒ α′s(t) = (0,− sin 4t, cos 4t) =⇒ |α′s| = 1

Definition 2.10. The principle unit normal vector N̂ of a curve is

N̂ =
dT/ds

|dT/ds|
This is the the normalised curvature vector.

Definition 2.11. The unit binormal vector B̂ of a curve is

B̂ = T × N̂
It is orthogonal to both the tangent vector T and the normal vector N̂ .
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Definition 2.12. The torsion τ of a curve α(t) is analogous to curvature
except it measures how quickly the curve twists out of the plane of curvature.
It is given by

τ = −N̂ · dB̂
ds

= −N̂ · dB̂/dt
|α′(t)|

Remark 2.13. If τ = 0 at all points, α is a plane curve. Otherwise the sign of
τ gives the direction of rotation.

Definition 2.14. The Frenet–Serret frame Λ is the collection

Λ = {T, N̂ , B̂}

By orthogonality, span{Λ} = R3.

Theorem 2.15. The Frenet–Serret formulae describe the motion of a curve
in 3 dimensional space.

dT

ds
= κN̂ (1)

dN̂

ds
= −κT + τB̂ (2)

dB̂

ds
= −τN̂ (3)

In other words, they describe how the vectors in the Frenet-Serret frame change
with respect to arc length.

Remark 2.16. Equations (1) and (3) say that T ′ and B̂′ lie in the span of the

normal vector N̂ .

Equation (2) says that N̂ ′ ∈ span{T, B̂}. In other words, N̂ ′ can be expressed

as a linear combination of T and B̂, weighted by the curvature κ and the torsion
τ .

Example 2.17. Consider the curve α(t) = (cos t, sin t, t) shown in fig. 1. This
traces out a circular spiral orbiting the z-axis at unit distance.

Constructing the members of Λ gives

T =
(
− 1√

2
sin t,

1√
2

cos t,
1√
2

)
N̂ = (− cos t,− sin t, 0)

B̂ =
( 1√

2
sin t,− 1√

2
cos t,

1√
2

)
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Figure 1: Three dimensional plot of the helix α over t ∈ [−2π, 2π].

The curvature and torsion are given by

dT

ds
=
(
− 1

2
cos t,−1

2
sin t, 0

)
=⇒ κ =

1

2
=⇒ R = 2

dB̂

ds
=
(1

2
cos t,

1

2
sin t, 0

)
=⇒ τ =

1

2

The rate of change of the normal vector with respect to arc length is

dN̂

ds
=
( 1√

2
sin t,− 1√

2
cos t, 0

)
These computations are consistent with the Frenet–Serret formulae.

3 Surfaces

Definition 3.1. A surface S is a 2-dimensional object in n-dimensional space.
We will focus on surfaces in 3 dimensions. A surface can be represented by a
map:

φ : R2 ⊇ D → S ⊆ R3

(u, v) 7→ (x(u, v), y(u, v), z(u, v))

Definition 3.2. The velocity vectors of a surface parametrised by φ(u, v) are

φu =
∂φ

∂u
=
(∂x
∂u
,
∂y

∂u
,
∂z

∂u

)
6



φv =
∂φ

∂v
=
(∂x
∂v
,
∂y

∂v
,
∂z

∂v

)
Definition 3.3. A surface S is regular [Car00] if it has the following properties:

1. Smoothness: if φ = (x, y, z) then the functions x, y, z have continuous
partial derivatives of all orders.

2. φ is a homeomorphism. Since φ is continuous by condition 1, this means
that φ also has an inverse φ−1 : φ(D)→ D that is smooth.

3. Regularity: at each p ∈ S the cross product φu × φv is non-zero. In
other words, the velocity vectors are linearly independent.

Definition 3.4. The tangent space TpS is the set of points reachable by a
linear combination of the two velocity vectors at some point φ(p) on the surface.
On a regular surface (by condition 3) the tangent space is a plane.

TpS = span{φu(p), φv(p)}

Definition 3.5. The unit surface normal vector on a regular surface is

N =
φu × φv
|φu × φv|

3.1 Constructions

3.1.1 Monge

The Monge parametrisation—named after the French mathematician Gaspard
Monge—describes a surface on the z-axis as a function over the 2-dimensional
xy-plane.

φ(x, y) = (x, y, f(x, y))

Where f is a smooth function. The velocity vectors are

φx = (1, 0, ∂xf)

φy = (0, 1, ∂yf)

Which are indeed linearly independent:

φx × φy =

∣∣∣∣∣∣
i j k
1 0 ∂xf
0 1 ∂yf

∣∣∣∣∣∣ = (−∂xf,−∂yf, 1) 6= 0

This formulation yields some useful expressions but it is limited to situations
where the surface does not turn back on itself so much that f(x, y) is undefined.
The domain can be limited so that the parametrisation is only defined for local
regions where this is true.
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3.1.2 Spherical

A nice parametrisation for a sphere is the following (from [Opr00]). Let S ⊂ R3

be a sphere of radius R centered at the origin. Let

D =
{

(u, v) ∈ R2 |u ∈ [0, 2π), v ∈
(
− π

2
,
π

2

)}
Then S is parametrised by

φ : D → S

(u, v) 7→ (R cosu cos v,R sinu cos v,R sin v)

Indeed each component of φ is smooth, and the velocity vectors are linearly
independent:

φu × φv = (R2 cosu cos2 v,R2 sinu cos2 v,R2 sin v cos v)

=⇒ |φu × φv| = R2 cos v 6= 0 ⇐⇒ R 6= 0

The last two-way implication is valid because the values of v in the parametrisation
are restricted so that cos v 6= 0.

3.1.3 Revolution

A 3 dimensional surface can be generated by taking a 2 dimensional curve and
rotating it about some axis.

Suppose α(t) = (g(t), h(t), 0) is a smooth, regular curve in the xy-plane. Rotating
it around the x-axis yields the following parametrisation for the surface of
revolution S:

φ(t, θ) = (g(t), h(t) cos θ, h(t) sin θ)

Notice that α(t) = φ(t, 0), i.e. α is the restriction of φ to θ = 0.

Let gt = ∂tg and ht = ∂th. The velocity vectors are

φt = (gt, ht cos θ, ht sin θ)

φθ = (0,−h sin θ, h cos θ)

Consider their cross product:

φt × φθ =

∣∣∣∣∣∣
i j k
gt ht cos θ ht sin θ
0 −h sin θ h cos θ

∣∣∣∣∣∣
8



= (hht,−gth cos θ,−gth sin θ)

=⇒ |φt × φθ|2 = h2(h2
t + g2

t ) ≥ 0

ht and gt are non-zero by regularity of α. So |φt × φθ| = 0 precisely when
h(t) = 0, when the curve touches the axis of revolution. So a point φ(t, θ) ∈ S
is regular ⇐⇒ h(t) 6= 0.

In general g(t) measures the distance along the curve α whereas h(t) measures
the distance from the axis of revolution. So if instead α(t) = (0, g(t), h(t)) is a
curve in the yz-plane, rotating it around the z-axis gives the parametrisation
φ(t, θ) = (h(t) sin θ, g(t), h(t) cos θ).

Lemma 3.6. The parametrisation of a surface of revolution has orthogonal
velocity vectors.

Proof. Suppose φ(t, θ) = (h(t), g(t) cos θ, g(t) sin θ). Then

φt = (h′(t), g′(t) cos θ, g′(t) sin θ)

φθ = (0,−g(t) sin θ, g(t) cos θ)

=⇒ φt · φθ = −g(t)g′(t) sin θ cos θ + g(t)g′(t) sin θ cos θ = 0

3.2 Curvature

We introduce two fundamental objects: the first and second fundamental forms.
The definitions of these operators and the Weingarten map are from [HD10]
whereas the derivation of their coefficients is from [Opr00].

Definition 3.7. The first fundamental form I(v, w) for some v, w ∈ TpS is
the symmetric operator

I(v, w) = v · w

and its quadratic form is then given by

I(v) = I(v, v) = v · v = |v|2

The first fundamental form describes how the surface φ distorts lengths from
their usual measurements in R3. Suppose γ is a unit speed curve with tangent
vector γ′, then γ′ · γ′ = |γ′|2 = 1 and so

1 = γ′ · γ′

= (u′φu + v′φv) · (u′φu + v′φv)

= (φu · φu)u′2 + (φv · φu + φu · φv)u′v′ + (φv · φv)v′2

9



= I(φu)u′2 + 2I(φu, φv)u
′v′ + I(φv)v

′2

= Eu′2 + 2Fu′v′ +Gv′2

where

E = I(φu) = φu · φu = |φu|2

F = I(φu, φv) = φu · φv
G = I(φv) = φv · φv = |φv|2

are called the coefficients of the metric or the coefficients of I.

Definition 3.8. Choose some point p ∈ D and a surface parametrisation φ :
D → S. Then the Weingarten map Ωp : TpS → TpS is the self-adjoint linear
mapping

Ωp(v1φu(p) + v2φv(p)) = −v1Nu(p)− v2Nv(p)

Remark 3.9. Self-adjoint means that ∀ v, w ∈ TpS, Ωp(v) · w = v · Ω(w).

Remark 3.10. The codomain of Ωp is indeed TpS:

N ·N = 1 =⇒ (N ·Nu = 0) ∧ (N ·Nv = 0)

=⇒ Nu(p), Nv(p) ∈ TpS
=⇒ Ωp(v) ∈ TpS

Definition 3.11. The second fundamental form II(v, w) for some v, w ∈
TpS is the symmetric operator

II(v, w) = Ωp(v) · w

and its quadratic form is

II(v) = II(v, v) = Ωp(v) · v = −v ·N ′

We also introduce a formulation of a curve on the surface (from [HD10]).

Suppose we have a curve α in D ⊆ R2 starting at p:

α : [0, ε]→ D

0 7→ p

t 7→ (α1(t), α2(t))

Then the projection of α onto a surface S under a parametrisation φ : D → S
gives a curve γ on the surface.
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Definition 3.12. The surface curve γ : [0, ε] → S is attained by projecting
α under the map φ:

γ = φ ◦ α
0 7→ φ(p) = w

t 7→ φ(α(t))

With initial velocity γ′(0) = φ′(p)α′(0) ∈ Tpφ.

Assume temporarily that γ is a unit speed curve so that |γ′(s)| = 1. So then
the unit tangent vector of γ is T (s) = γ′(s). Then the curvature κ of γ is
κ(s) = |T ′(s)|. The surface normal along γ(s) is given by N(γ(s)).

Definition 3.13. The side normal B is

B = N × T

Definition 3.14. The moving orthonormal frame [HD10] is the collection
of unit vectors

{T (t), B(t), N(t)}

along the curve γ(t) for 0 ≤ t ≤ ε, where TtS = span{T (t), B(t)} and N(t) is
orthogonal to this plane.

Lemma 3.15. Since T · T = 1, we have that T · T ′ = 0 and so dT/ds is
orthogonal to the tangent vector and so lies in the span of N and B. That is,

dT

ds
= κnN + κgB

The following definitions of the components of curvature are from [HD10].

Definition 3.16. The normal curvature κn is the component of the curvature
κ of the surface curve γ acting in the normal direction:

κn =
dT

ds
·N

It measures the acceleration of γ in the normal direction.

Definition 3.17. The geodesic curvature κg is the component of the curvature
κ of the surface curve γ acting in the side normal direction:

κg =
dT

ds
·B

It measures the acceleration of γ in the side normal direction.

Remark 3.18. If κg(t) = 0 at all points 0 ≤ t ≤ ε, then γ is a geodesic, i.e. it
is a straight line.
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Lemma 3.19. The curvature κ can now be expressed as

κ =
√
κ2
n + κ2

g

This leads us to the following lemma, which is derived from a combination of
discussion in [Opr00] and [HD10].

Lemma 3.20. The normal curvature of a unit-speed curve γ(s) is κn = −T ·
N ′ = II(T ), where T = dγ/ds.

Proof. We know that T is a tangent vector and N is orthogonal to the tangent
plane, so we have that

T ·N = 0

=⇒ (T ·N)′ = 0

=⇒ (T ′ ·N) + (T ·N ′) = 0

=⇒ T ′ ·N = −T ·N ′

=⇒ κn = −T ·N ′

where N ′ = u′Nu + v′Nv, u
′ = du/ds and v′ = dv/ds. Then

κn = −T ·N ′

= −(u′φu + v′φv) · (u′Nu + v′Nv) = II(T )

= (−φu ·Nu)u′2 − (φv ·Nu + φu ·Nv)u′v′ − (φv ·Nv)v′2

Remark 3.21. The coefficients of the second fundamental form l, 2m and n
are

l = −φu ·Nu
2m = −(φv ·Nu + φu ·Nv)
n = −φv ·Nv

=⇒ κn = lu′2 + 2mu′v′ + nv′2

So we have shown that the normal curvature κn of a unit-speed curve γ(s) at
s = s0 in the direction γ′(s0) is given by II(γ′(s0)), where the derivatives are
taken in terms of arc length.

But what about an arbitrary parametrisation? If γ(t) is not unit-speed then
ds/dt = |γ′| =

√
I(γ′) (definition 2.6) and so at γ(0) in the direction γ′(0)

dγ

dt
=
dγ

ds

ds

dt
=
dγ

ds

√
I
(dγ
dt

)
=
∣∣∣dγ
dt

∣∣∣dγ
ds
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=⇒ dγ

ds
=

1

|dγ/dt|
dγ

dt

=⇒ κn = II
(√

I(γ′(0))γ′(0)
)

=
II(γ′(0))

I(γ′(0))

And so we have shown that the normal curvature of a curve γ(t) with velocity
γ′(t) at t = t0 is

κn =
II(γ′(t0))

I(γ′(t0))

For further discussion on this derivation, see [HD10].

Lemma 3.22. The coefficients of II may be computed using

l = φuu ·N
m = φuv ·N
n = φvv ·N

Proof. (From [Opr00]). We have that φu and φv are tangent vectors. So both
are orthogonal to N , i.e. φu ·N = 0 and φv ·N = 0. Therefore

d

du
(φu ·N) = 0

d

du
(φv ·N) = 0

d

dv
(φu ·N) = 0

d

dv
(φv ·N) = 0

=⇒ φuu ·N = −φu ·Nu = l

φuv ·N = −φv ·Nu
φvu ·N = −φu ·Nv
φvv ·N = −φv ·Nv = n

=⇒ φuv + φvu = −(φv ·Nu + φu ·Nv) = 2m

=⇒ m = φuv ·N

Example 3.23. Consider the cone described by the parametrisation

φ(t, θ) = (t,
t

2
cos θ,

t

2
sin θ)

The partial derivatives are

13



φt = (1,
1

2
cos θ,

1

2
sin θ)

φθ = (0,− t
2

sin θ,
t

2
cos θ)

And the surface normal is

φt × φθ =
( t

4
,− t

2
cos θ,− t

2
sin θ

)
=⇒ |φt × φθ| =

t
√

5

4

=⇒ N =
( 1√

5
,− 2√

5
cos θ,− 2√

5
sin θ

)
This is pointing towards inwards towards the x-axis. Consider the curve α(θ) =
(1/2, θ) so that the projected curve γ = φ(α) traces out a circle on the cone at
t = 1/2.

γ(θ) = (
1

2
,

1

4
cos θ,

1

4
sin θ)

γ′(θ) = (0,−1

4
sin θ,

1

4
cos θ) =⇒ |γ′(θ)| = 1

4
=⇒ T = (0,− sin θ, cos θ)

=⇒ dT

ds
=

γ′′(θ)

|γ′(θ)|
= (0,−4 cos θ,−4 sin θ) =⇒ κ = 4

The side normal vector is

B = N × T =
(
− 2√

5
,− 1√

5
cos θ,− 1√

5
sin θ

)
So the components of curvature are

κn =
dT

ds
·N =

8√
5

κg =
dT

ds
·B =

4√
5

=⇒ κ =
√
κ2
n + κ2

g = 4 =
∣∣∣dT
ds

∣∣∣
κg 6= 0 =⇒ γ is not a geodesic.

The derivatives of the unit surface normal are

Nt = (0, 0, 0)
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Nθ =
(

0,
2√
5

sin θ,− 2√
5

cos θ
)

Take the unit speed tangent vector w = (0, 0, 1) on the surface of the cone at
the point φ(p) for p = (1/2, 0).

w = w1φt(p) + w2φθ(p) = 4φθ(p)

= (0, 0, 1)

=⇒ Ω(w) = −4Nθ = −4
(

0, 0,−2
√

5

5

)
=
(

0, 0,
8
√

5

5

)
=⇒ II(w) = Ω(w) · w

=
8
√

5

5
= κn

This agrees with our earlier calculation. Now suppose instead of a unit speed
tangent vector we have w = γ′(0) = (0, 0, 1/4). Then the second fundamental
form is instead

w = φθ(p)

=⇒ Ω(w) =
(

0, 0,
2√
5

)
=⇒ II(w) =

√
5

10
6= κn

The first fundamental form at w is I(w) = 1/16 and so

II(w)

I(w)
= 16

√
5

10
=

8
√

5

5
= κn

as expected. The normal curvature may also be computed using the formula
κn = −T ·N ′:

N ′ =
dN

ds
=
dN

dt

dt

ds
+
dN

dθ

dθ

ds

=
1

(t/2)

(
0,

2√
5

sin θ,− 2√
5

cos θ
)

= (0,
4

t
√

5
sin θ,− 4

t
√

5
cos θ)

=⇒ N ′(p) =
(

0, 0,−8
√

5

5

)
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=⇒ −T ·N ′(p) = (0, 0,−1) ·N ′(p)

=
8
√

5

5
= κn

3.2.1 Mean Curvature

Definition 3.24. The mean curvature H is defined by the relation

2H = κ1 + κ2

where κ1, κ2 are the normal curvatures associated to any two perpendicular
tangent vectors.

It turns out [Opr00] that

H =
En+Gl − 2Fm

2(EG− F 2)
(4)

which depends only on the coefficients of the first and second fundamental forms
and not on the particular tangent vectors chosen.

Definition 3.25. A surface is minimal if H = 0.

This condition is saying that on a minimal surface, any two perpendicular
tangent directions have equal and opposite normal curvature. So either the
surface is a plane in which case κ1 = κ2 = 0, or κ1 = −κ2.

Remark 3.26. It’s sufficient to verify that En + Gl − 2Fm = 0 to see if a
surface is minimal.

3.3 Catenoid

A catenary is the curve traced out by a freely hanging chain suspended between
two points. The shape is that which minimises its own total gravitational
potential energy [Opr00].

It is described by the equation

y = a cosh
x

a

where (0, a) is the point on the catenary that is the closest to the x-axis.

A catenoid is a wormhole-like surface created by rotating a catenary around its
gravitational axis. Some examples are shown in fig. 3. It is parametrised by

φ(t, θ) = (t, (a cosh
t

a
) cos θ, (a cosh

t

a
) sin θ)

Since cosh(t) 6= 0 for real t, φ is a regular surface ⇐⇒ a 6= 0.
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The partial derivatives are

φt = (1, sinh
t

a
cos θ, sinh

t

a
sin θ)

φθ = (0,−a cosh
t

a
sin θ, a cosh

t

a
cos θ)

and the surface normal is given by

φt × φθ =
(
a sinh

t

a
cosh

t

a
,−a cos θ cosh

t

a
,−a sin θ cosh

t

a

)
=⇒ |φt × φθ| = a cosh2 t

a

=⇒ N = (tanh
t

a
,− cos θ sech

t

a
,− sin θ sech

t

a
)

3.3.1 Minimality

The catenoid is one of the most famous minimal surfaces. To verify its minimality
we will compute the coefficients of I and II. The coefficients of the metric, E,
F and G are

E = I(φt) = cosh2 t

a
F = I(φt, φθ) = 0

G = I(φθ) = a2 cosh2 t

a

and the second partial derivatives of φ are

φtt =
(

0,
1

a
cosh

t

a
cos θ,

1

a
cosh

t

a
sin θ

)
φtθ =

(
0,− sin θ sinh

t

a
, cos θ sinh

t

a

)
φθθ =

(
0,−a cosh

t

a
cos θ,−a cosh

t

a
sin θ

)
so the coefficients of the second fundamental form, l, m and n are

l = φtt ·N = −1

a
m = φtθ ·N = 0

n = φθθ ·N = a

and so we can see that H = 0 since

En+Gl − 2Fm = a cosh2 t

a
− a cosh2 t

a
= 0

17



Figure 2: Behaviour of x/y as u is allowed to vary.

3.3.2 Possibility Space

This section is an analysis of some special points on a catenary and how they
relate to the properties of their associate catenoid. Much of the source material
is from [Opr00].

Let u = a/y. The equation of a catenary can then be expressed as

x

y
= u cosh−1 1

u

Figure 2 shows how the ratio between x and y changes as u is allowed to vary.
We can see that for each value of x/y—except for some maximum—there are
two values of u that produce a catenary passing through (−x, y) and (x, y).

To find the maximum of the curve we solve the equation

d

du
(u cosh−1 1

u
) = 0

and see that the critical point is at u ≈ 0.5524341245 for u ∈ [0, 1]. So then the
maximum value of x/y ≈ 0.6627434192.

Suppose we pick a point (x0, y0) and ask if we can produce a catenary that
passes through this point. What we have shown is that this is possible precisely
when x0/y0 / 0.6627434192.

Let x0/y0 = 0.4/1. Then the two possible catenaries are given by the parameters

u0 = a0 ≈ 0.1579623972

u1 = a1 ≈ 0.9107379943

The catenoids C0 and C1 associated with these values are shown in fig. 3.
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(a) Narrow catenoid C0 produced
using the catenary a0 coshx/a0.

(b) Thick catenoid C1 produced using
the catenary a1 coshx/a1.

Figure 3: Catenoids created by revolving two different catenaries around their
gravitational axis.

We will now show that the narrow catenoids with u / 0.5524341245 always have
a larger surface area than their thick counterparts.

Definition 3.27. The surface area [HD10] of a surface parametrised by φ :
D → S is

A(φ) =

∫
D

|φu × φv| du dv

Consider a catenary in the xy-plane connecting the points (−x0, y0) and (x0, y0).
Rotating this catenary forms a catenoid connecting the two disks centered at
(−x0, 0) and (x0, 0) with radius y0. The surface area of this catenoid is given
by

A(φ) = 2π

∫ x0

−x0

a cosh2 x

a
dx

Consider the ratio between the area of the surface and the area of the two disks
that it connects:

A(φ)

2πy2
0

=
a

y2
0

∫ x0

−x0

cosh2 x

a
dx

For C0 this quantity is ≈ 1.050630087 whereas for C1 it is ≈ 0.7772798291.
Since both connect the same two disks, this means the thicker catenoid C1 has
the smaller surface area. More generally,

A(φ)

2πy2
0

=
a

y2
0

∫ x0

−x0

cosh2 x

a
dx
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Figure 4: Relative area of catenoid for some choice of connected disks. Dashed
line is narrow catenoids with values of u / 0.5524341245 whereas solid line is
thicker catenoids with values of u ' 0.5524341245. Horizontal line is the area
of the two disks.

=
a

2y2
0

(
a sinh

2x0

a
+ 2x0

)
=

a

y0

( a
y0

sinh
x0

a
cosh

x0

a
+
x0

y0

)
= u

(
u sinh

x0

a
cosh

x0

a
+ u cosh−1 1

u

)
= u2

( 1

u
sinh

x0

a
+ cosh−1 1

u

)
= u2

( 1

u

√
cosh2 x0

a
− 1 + cosh−1 1

u

)
= u2

( 1

u

√
1

u2
− 1 + cosh−1 1

u

)
This is a formulation of the ratio in terms of u. Now for each value of x0/y0 we
can plot the relative surface area of the associated catenoids (fig. 4).

The graph shows that the narrower catenoids have strictly larger surface area
than their thicker counterparts. In fact, their surface area is greater than that
of the disks that they connect. On the other hand, the thicker catenoids have
area smaller than that of the disks that they connect, up to a certain point.

The point where the narrow and thick catenoids have the same surface area is
u = 0.5524341245—the critical point of fig. 2. At this point there is only a single
possible catenoid connecting the two disks and it has maximal surface area.

What is the value of x/y for which the surface area of the catenoid is equal to
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the two disks that it connects? Consider the surface area of the catenoid by
itself:

A(φ) = 2π

∫ x0

−x0

a cosh2 x

a
dx

= 2πa2 sinh
x0

a
cosh

x0

a
+ 2πax0

Set y0 = 1 and let x0 ∈ [0, 0.6627434192]. This is a range over every possible
x/y ratio where a catenoid may be constructed between the disks. Solving
A(φ)− 2π = 0 yields xs/ys = 0.5276973970. This is the so-called Goldschmidt
discontinuous solution where if x0/y0 ≥ xs/ys then two disks give an absolute
minimum for surface area. For more discussion on this see [Opr00].

3.3.3 Helicoid

The helicoid (fig. 5a) is a minimal surface closely related to the catenoid. It can
be generated by the parametrisation

φ(u, v) = (v cosu, v sinu, u)

This describes a rotating rising line, somewhat analogous to the rotating rising
point that generates a helix. Surfaces like this are called ruled surfaces.

E = v2 + 1

F = 0

G = 1

l = 0

m =
1√

v2 + 1

n = 0

=⇒ H = En+Gl − 2Fm = 0

So the helicoid is indeed a minimal surface. There exists a continuous deformation
[Opr00] between the helicoid and the catenoid given by the parametrisation

ξ(t) = ( sinu cos t sinh v + sin t cosu cosh v,

− cos t sinh v cosu+ sin t cosh v sinu,

u cos t+ v sin t)

where t = 0 corresponds to a helicoid and t = π/2 is a catenoid. This
deformation is shown in fig. 5.
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(a) ξ(0) (b) ξ(π/10)

(c) ξ(π/5) (d) ξ(3π/10)

(e) ξ(2π/5) (f) ξ(π/2)

Figure 5: Plot of ξ showing the deformation of a helicoid into a catenoid.
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4 Minimal Surfaces

Suppose M is a surface that can be locally described as a graph over a plane
(Monge parametrisation, section 3.1.1). Let

φ(u, v) = (u, v, f(u, v))

Definition 4.1 (The Minimal Surface Equation). A surface is minimal if and
only if it can be locally expressed as the graph of a solution to

(1 + f2
v )fuu − 2fufvfuv + (1 + f2

u)fvv = 0 (5)

See [HD10] and [Opr00] for further discussion.

Since any solution of eq. (5) is a minimal surface, we can “discover” minimal
surfaces by finding solutions. Suppose we add some arbitrary constraint that
makes the differential equation solvable.

Example 4.2. We want to solve eq. (5) for some f(u, v) so that φ(u, v) is
minimal. So suppose f is separable so that the value of f(u, v) is separately
dependent on the inputs x and y. More precisely,

f(u, v) = g(u) + h(v)

=⇒ fu = g′(u)

fv = h′(v)

fuu = g′′(u)

fvv = h′′(v)

fuv = 0

Substituting these into the minimal surface equation yields

(1 + h′(v)2)g′′(u) + (1 + g′(u)2)h′′(v) = 0

(1 + h′(v)2)g′′(u) = −(1 + g′(u)2)h′′(v)

(1 + h′(v)2)

h′′(v)
= − (1 + g′(u)2)

g′′(u)

But then the left side is dependent on only v whereas the right side is dependent
on only u, and yet they are equal for any value of u or v. Another way of saying
this is that any change in u has no effect on either side since v has not changed.
Therefore both sides must be equal to the same constant c.

So consider the left side:

1 + h′(v)2 = ch′′(v)
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Let y = h′. Then dy = h′′ dv and so

1 + y2 = cy′

1 =
cy′

1 + y2∫
1 dv =

∫
cy′

1 + y2
dv

v =

∫
c

1 + y2
h′′(v) dv

v = c

∫
1

1 + y2
dy

Suppose y = tanx. Then

d

dy
y =

d

dy
tanx

1 = sec2 x
dx

dy

dy

dx
= sec2 x = 1 + tan2 x =⇒ dx

dy
=

1

1 + y2

x =

∫
1

1 + y2
dy = tan−1 y

=⇒ v = c

∫
1

1 + y2
dy = c tan−1 y

Where the constant of integration has been suppressed. So now we have that
v = c tan−1(y) so y = tan(v/c). Therefore,

dh

dv
= tan

v

c

h(v) =

∫
tan

v

c
dv

= −c ln cos
v

c

where the constant of integration was again suppressed. The calculation for
g(u) is identical except the sign is flipped so

f(u, v) = c ln cos
u

c
− c ln cos

v

c

= c
(

ln cos
u

c
− ln cos

v

c

)
= c ln

cos(u/c)

cos(v/c)
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Therefore the parametrisation φ is given by

φ(u, v) =
(
u, v, c ln

cos(u/c)

cos(v/c)

)
This is Scherk’s first surface (fig. 6). Notice that it is only defined on a
checkerboard of the uv-plane as the logarithm is not defined for negative inputs.

(a) Side view showing the terrain. (b) Checkerboard pattern can be seen
from above.

Figure 6: Scherk’s first surface for c = 1.

4.1 Soap Films

In this section we will introduce the relationship between minimal surfaces
in differential geometry and soap films in real life. The derivation of the
fundamental result of this section is from [Opr00].

The shape of a soap film is dictated by is surface tension σ. Surface tension acts
to pull the film as tight as possible until some equilibrium is reached.

Definition 4.3. The surface tension σ is defined as the force per unit distance.

Definition 4.4. The pressure p is force per unit area.

In the context of soap films p is the pressure difference across the film. In other
words it is the difference in pressure on the exterior and interior of the film.
When p is zero, the film is in equilibrium with its environment.

Theorem 4.5 (First Principle of Soap Films). A soap film minimises its surface
area. [Opr00]

To see how this works consider a section of soap film that is expanded outwards
due to an applied pressure p. More precisely, take a piece of film given by two
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perpendicular directions x and y on the surface and compute the work done to
expand the surface area under some pressure.

Consider the x direction first. The original film is a sector of a circle with angle
θ and radius R1. The circumference of this sector is x = (θ/2π)2πR1 = θR1.
When this is expanded by an applied pressure p, the new radius is R1 + δr and
the new circumference is x+ δx.

δx = θδr =⇒ θ =
δx

δr

So then for the expanded section we have the relation

x+ δx

R1 + δr
= θ =

x

R1

and so we can write the new circumference of the expanded sector as

x+ δx =
x

R1
(R1 + δr) = x

(
1 +

δr

R1

)
Similarly for the y component with radius R2 we have

y + δy = y
(

1 +
δr

R2

)
Definition 4.6. The work done W = FD where F is force and D is the
distance over which the force acts. Equivalently W = σδS where δS is the
change in surface area.

The work done to expand some section of soap film is

W = FD

= (pS)δr

= (pxy)δr

= σδS

and the change in surface area is given by

δS = (x+ δx)(y + δy)− xy

= x
(

1 +
δr

R1

)
y
(

1 +
δr

R2

)
− xy

= xyδr
( 1

R1
+

1

R2

)
+ xy

(δr)2

R1R2

If δr is small, the higher order term can be ignored. So we have that
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pxyδr = σδS

= σxyδr
( 1

R1
+

1

R2

)
=⇒ p = σ

( 1

R1
+

1

R2

)
Hence we arrive at the following fundamental result:

Theorem 4.7. The Laplace-Young equation is given by

p = σ
( 1

R1
+

1

R2

)
Combining our earlier requirement that the two directions x and y are perpendicular
with the fact that the normal curvature of a circle segment with radius r is 1/r
we get

2H =
( 1

R1
+

1

R2

)
and so the Laplace-Young equation may be rewritten as

p = 2σH

where H is the mean curvature of the film. This leads to the observation:

Corollary 4.8. A soap film in equilibrium is a minimal surface.

Proof. When the soap film is in equilibrium with its environment,

p = 0 =⇒ H = 0

and so the film is a minimal surface.

4.2 Isothermal Coordinates

In this section we will introduce a special type of parametrisation that simplifies
a lot of what we have already discussed, and sets the foundations for what comes
later. The source material is from [Opr00].

Definition 4.9. A parametrisation φ is isothermal if E = φu ·φu = φv ·φv = G
and F = φu · φv = 0.

Remark 4.10. If φ is isothermal, then the definition of mean curvature reduces
to

H =
n+ l

2E
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Remark 4.11. If φ is isothermal then φ is minimal ⇐⇒ n + l = φuu · N +
φvv ·N = 0.

Theorem 4.12. Isothermal coordinates exist on any minimal surface.

Proof. See [Opr00].

Definition 4.13. The laplace operator ∆ is defined by ∆φ = φuu + φvv.

Definition 4.14. A function f is harmonic if ∆f = 0.

The following theorem is the main result of this section. Its proof is a simplified
and more specific adaptation of a similar result in [Opr00].

Theorem 4.15. If M is a regular surface with isothermal coordinates φ, M is
minimal ⇐⇒ φ is harmonic.

Proof. Since φ is isothermal we have

H =
n+ l

2E
=⇒ 2EH = n+ l

= φuu ·N + φvv ·N
= N · (φuu + φvv)

= N ·∆φ

So suppose M is minimal. Then N ·∆φ = 0 =⇒ ∆φ = 0 since |N | = 1. Hence
φ is harmonic.

Conversely suppose φ is harmonic. So then ∆φ = 0 =⇒ H = 0 since |N | = 1
as before and E 6= 0. Therefore M is minimal.

4.3 Complex Analysis

Complex analysis turns out to be very useful in generating minimal surfaces. In
this section we define some well-known foundational results that will be useful
later. For further reading see [ST83] and [Opr00].

Suppose f is a function f(z) = r(u, v) + is(u, v) where z = u+ iv and r, s are
real-valued functions of real numbers u and v.

Definition 4.16. The Cauchy-Riemann equations are the conditions

∂r

∂u
=
∂s

∂v
(6)

∂s

∂u
= −∂r

∂v
(7)
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Definition 4.17. A function f is differentiable at z if ∂r/∂u, ∂s/∂u, ∂r/∂v
and ∂s/∂v all exist and f conforms to the Cauchy-Riemann equations at z.

Definition 4.18. A function is holomorphic if it is differentiable at all points
in its domain.

Definition 4.19. A function is meromorphic if it is holomorphic over all of its
domain except a few isolated points. These points are called its singularities.

Theorem 4.20. If f(z) = r(u, v) + is(u, v) is holomorphic then both r and s
are harmonic.

Proof. (From [Opr00]). Suppose f is holomorphic. So then by the Cauchy-
Riemann equations,

∂2r

∂u2
=

∂

∂u

∂s

∂v
=

∂2s

∂u∂v
∂2r

∂v2
= − ∂

∂v

∂s

∂u
= − ∂2s

∂u∂v

=⇒ ∂2r

∂u2
+
∂2r

∂v2
= 0

=⇒ ∆r = 0

so r is harmonic. Similarly for s we have

∂2s

∂u2
= − ∂

∂u

∂r

∂v
= − ∂2r

∂u∂v
∂2s

∂v2
=

∂

∂v

∂r

∂u
=

∂2r

∂u∂v

=⇒ ∂2s

∂u2
+
∂2s

∂v2
= 0

=⇒ ∆s = 0

so s is also harmonic.

Definition 4.21. Consider a parametrisation φ(u, v) with complex coordinates.
If z = u+ iv and z̄ = u− iv then we denote

∂

∂z
=

1

2

( ∂
∂u
− i ∂

∂v

)
∂

∂z̄
=

1

2

( ∂
∂u

+ i
∂

∂v

)
Lemma 4.22. If f(z) = r(u, v) + is(u, v) is a function then f is holomorphic
⇐⇒ ∂f/∂z̄ = 0.
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Proof. Suppose f is holomorphic. Then

∂f

∂z̄
=

1

2

(∂f
∂u

+ i
∂f

∂v

)
=

1

2

( ∂r
∂u

+ i
∂s

∂u
+ i
(∂r
∂v

+ i
∂s

∂v

))
=

1

2

( ∂r
∂u

+ i
∂s

∂u
− i ∂s

∂u
− ∂r

∂u

)
= 0

Conversely suppose that ∂f/∂z̄ = 0. Then

∂f

∂u
+ i

∂f

∂v
= 0

∂r

∂u
+ i

∂s

∂u
+ i

∂r

∂v
− ∂s

∂v
= 0

=⇒
( ∂r
∂u
− ∂s

∂v

)
= 0( ∂s

∂u
+
∂r

∂v

)
= 0

=⇒
( ∂r
∂u

=
∂s

∂v

)
∧
( ∂s
∂u

= −∂r
∂v

)
so f is holomorphic.

Lemma 4.23. ∆f = fuu + fvv = 4(∂/∂z(∂f/∂z̄)).

Proof.

∂

∂z

(∂f
∂z̄

)
=

∂

∂z

(1

2
(fu + ifv)

)
=

1

4
(fuu + ifuv − ifuv + fvv)

=
1

4
(fuu + fvv) =

1

4
∆f

=⇒ ∆f = 4
( ∂
∂z

(∂f
∂z̄

))

Definition 4.24. Suppose f = r + is is continuous and γ(t) : [a, b] → C is a
curve. Then the complex integral of f along γ is∫

γ

f =

∫ b

a

f(γ(t))γ′(t) dt

Theorem 4.25. The Fundamental Theorem of Calculus for complex integrals
states that if f is holomorphic then∫

γ

f ′ = f(b)− f(a)
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Theorem 4.26 (The Identity Theorem). If f and g are two holomorphic
functions on a connected, open region D ∈ C, and f(zi) = g(zi) for some
convergent sequence z1, z2, . . . , zn, . . .→ z̄ ∈ D, then f = g on all of D.

This definition is from [Opr00]. For an alternate one see [ST83].

4.4 The Weierstrass-Enneper Representation

The Weierstrass-Enneper representation allows us to create minimal surfaces
using holomorphic functions. The derivation here is from [Opr00].

Let M be a minimal surface wih isothermal parametrisation φ(u, v). Let z =
u+iv denote the corresponding complex coordinate. We have that u = (z+ z̄)/2
and v = −i(z − z̄)/2 and so we can write

φ(z, z̄) = (ϕ1(z, z̄), ϕ2(z, z̄), ϕ3(z, z̄))

where ϕi are complex valued functions that happen to take real values.

As we defined in the previous section, we have that

∂ϕi

∂z
=

1

2

(∂ϕi
∂u
− i∂ϕ

i

∂v

)
=

1

2
(ϕiu − iϕiv) = ϕiz

So the first order derivative φ′ is

φ′ =
∂φ

∂z
= (ϕ1

z, ϕ
2
z, ϕ

3
z)

We will use the following notation:

(φ′)2 = (ϕ1
z)

2 + (ϕ2
z)

2 + (ϕ3
z)

2

|φ′|2 = |ϕ1
z|2 + |ϕ2

z|2 + |ϕ3
z|2

where |z| =
√
u2 + v2 is the modulus of z. Consider the following:

(ϕiz)
2 =

(1

2
(ϕiu − iϕiv)

)2

=
1

4
(ϕiu − iϕiv)(ϕiu − iϕiv)

=
1

4
((ϕiu)2 − (ϕiv)

2 − 2iϕiuϕ
i
v)

So then (φ′)2 is

(φ′)2 = (ϕ1
z)

2 + (ϕ2
z)

2 + (ϕ3
z)

2
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=
1

4

( 3∑
j=1

(ϕju)2 −
3∑
j=1

(ϕjv)
2 − 2i

3∑
j=1

ϕjuϕ
j
v

)
=

1

4
(|φu|2 − |φv|2 − 2i(φu · φv))

=
1

4
(E −G− 2iF )

Lemma 4.27. φ is isothermal ⇐⇒ (φ′)2 = 0

Proof. Suppose φ is isothermal. Then

(φ′)2 =
1

4
(E −G− 2iF ) =

1

4
(E − E − 0) = 0

Conversely suppose (φ′)2 = 0. So then

1

4
(E −G− 2iF ) =

E

4
− G

4
− iF

2
= 0 + 0i

=⇒
(E

4
− G

4
= 0
)
∧
(
− F

2
= 0
)

=⇒ (E = G) ∧ (F = 0)

and so φ is isothermal.

Now instead consider |φ′|2:

|ϕiz|2 =
1

4
((ϕiu)2 + (ϕiv)

2)

=⇒ |φ′|2 = |ϕ1
z|2 + |ϕ2

z|2 + |ϕ3
z|2

=
1

4

( 3∑
j=1

|ϕju|2 +

3∑
j=1

|ϕjv|2
)

=
1

4
(|φu|2 + |φv|2) =

1

4
(E +G)

Lemma 4.28. If φ is an isothermal parametrisation of a regular surface, |φ′|2 =
E/2 6= 0.

Proof. If φ is isothermal, E = G and so |φ′|2 = 2E/4 = E/2. This is non-zero
by regularity.

Theorem 4.29. If M is a surface with isothermal parametrisation φ, M is
minimal ⇐⇒ φ′ is holomorphic.
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Proof. Suppose M is minimal. Therefore since φ is isothermal, we have that φ
is harmonic (theorem 4.15) so ∆φ = 0. By lemma 4.23 then

4∆φ = 0 =
∂

∂z̄

(∂φ
∂z

)
=
∂φ′

∂z̄

so by lemma 4.22 φ′ is holomorphic. But equality holds both ways so supposing
that φ′ is holomorphic implies that φ is harmonic. So φ isothermal =⇒ M is
minimal.

Recall that an isothermal parametrisation can be found for any minimal surface
M . This theorem is powerful because it says that M can be described near each
of its points by a triple of holomorphic functions.

Suppose φ′ = (ϕ1
z, ϕ

2
z, ϕ

3
z) is a triple of holomorphic functions so that (φ′)2 = 0.

By the results above φ is an isothermal parametrisation for a minimal surface
M . We can construct φ(z, z̄) = (ϕ1, ϕ2, ϕ3) explicitly by setting

ϕi(z, z̄) = ci + 2Re
{∫

ϕiz dz
}

To see how this works note that dz = du + idv since z = u + iv. Also, ϕiz =
1/2(ϕiu − iϕiv). Therefore

ϕizdz =
1

2
(ϕiu − iϕiv)(du+ idv)

=
1

2
(ϕiudu+ ϕivdv + i(ϕiudv − ϕivdu))

ϕiz̄dz̄ =
1

2
(ϕiu + iϕiv)(du− idv)

=
1

2
(ϕiudu+ ϕivdv − i(ϕiudv − ϕivdu))

=⇒ ϕizdz + ϕiz̄dz̄ = ϕiudu+ ϕivdv = dϕi

The last line is also equal to two times the real part of ϕizdz, so

dϕi = 2Re
{
ϕizdz

}
and so integrating both sides gives

ϕi = ci + 2Re
{∫

ϕiz dz
}

So we can construct a minimal surface simply by selecting a triple of holomorphic
functions ϑ = (ϑ1, ϑ2, ϑ3) with (ϑ)2 = 0. This setup implies the existence of an
isothermal parametrisation φ for a minimal surface.

Suppose we have a holomorphic function f and a meromorphic function g so
that fg2 is holomorphic. Then set
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ϑ1 =
1

2
f(1− g2)

ϑ2 =
i

2
f(1 + g2)

ϑ3 = fg

This construction does satisfy our isothermal condition:

(ϑ)2 = (
1

2
f(1− g2))2 + (

i

2
f(1 + g2))2 + f2g2

=
1

4
f2(−4g2) + f2g2

= f2g2 − f2g2

= 0

So now we arrive at the main result of this section: the Weierstrass-Enneper
representation.

Theorem 4.30 (Weierstrass-Enneper I). If f is holomorphic on a domain D,
g meromorphic on D, and fg2 holomorphic on D, then a minimal surface is
defined by the parametrisation φ(z, z̄) = (ϕ1(z, z̄), ϕ2(z, z̄), ϕ3(z, z̄)) where

ϕ1 = Re
{∫

f(1− g2) dz
}

ϕ2 = Re
{∫

if(1 + g2) dz
}

ϕ3 = 2Re
{∫

fg dz
}

The constant of integration ci = 0.

Example 4.31. Let f = −e−z/2 and g = −ez. Then

ϕ1 = Re
{∫

f(1− g2) dz
}

= Re
{
− 1

2

∫
e−z − ez dz

}
= Re

{ez + e−z

2

}
= Re{cosh z}
= Re{coshu cos v + i sinhu sin v}
= coshu cos v
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ϕ2 = Re
{∫

if(1 + g2) dz
}

= Re
{
− i

2
(ez − e−z)

}
= Re

{
− i
(ez − e−z

2

)}
= Re{−i sinh z}
= Re{coshu sin v − i sinhu cos v}
= coshu sin v

ϕ3 = Re
{

2

∫
fg dz

}
= Re

{∫
eze−z dz

}
= Re{z} = Re{u+ iv} = u

=⇒ φ(u, v) = (coshu cos v, coshu sin v, u)

Which parametrises a catenoid.

This construction is useful but it has a lot of conditions. Consider instead if g
is holomorphic with an inverse g−1 that is also holomorphic. Set τ = g =⇒
dτ = g′ dz, and define F (τ) = f/g′. Then F (τ) dτ = f dτ . Substitute g → τ
and f dz → F (τ) dτ and we get

Theorem 4.32 (Weierstrass-Enneper II). For any holomorphic function F (τ), a
minimal surface is defined by the parametrisation φ(z, z̄) = (ϕ1(z, z̄), ϕ2(z, z̄), ϕ3(z, z̄))
where

ϕ1 = Re
{∫

(1− τ2)F (τ) dτ
}

ϕ2 = Re
{∫

i(1 + τ2)F (τ) dτ
}

ϕ3 = 2Re
{∫

τF (τ)dτ
}

Example 4.33. Let F (τ) = (2τ2)−1 and τ = ez. Then

ϕ1 = Re
{∫

(1− τ2)F (τ) dτ
}

= Re
{1

2

∫
1− τ2

τ2
dτ
}

= Re
{1

2
(−τ−1 − τ)

}
= Re

{
−
(ez + e−z

2

)}
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= Re{− cosh z}
= Re{− coshu cos v − i sinhu sin v}
= − coshu cos v

ϕ2 = Re
{∫

i(1 + τ2)F (τ) dτ
}

= Re
{ i

2

∫
1 + τ2

τ2
dτ
}

= Re
{ i

2
(−τ−1 + τ)

}
= Re

{
i
(ez − e−z

2

)}
= Re{i sinh z}
= Re{i sinhu cos v − coshu sin v}
= − coshu sin v

ϕ3 = 2Re
{∫

τF (τ) dτ
}

= Re
{∫

τ−1 dτ
}

= Re{log(τ)} = Re{log(ez)}
= Re{z} = Re{u+ iv} = u

=⇒ φ(u, v) = (− coshu cos v,− coshu sin v, u)

which parametrises a catenoid.

4.5 The Björling Problem

The Weierstrass-Enneper representation allows the construction of a minimal
surface from any holomorphic function. This is very useful but we can build on
top of it to create minimal surfaces using a more geometric condition.

Definition 4.34. A function f(x) of a real variable x is real analytic if f(z)
for a complex variable z is holomorphic. Equivalently the taylor series of a
real analytic function converges to the function itself. Then f(z) is called the
holomorphic extension of f(x).

Suppose α(t) : I → R3 is a real analytic curve and ℵ : I → R3 is a real analytic
vector field such that |ℵ(t)| = 1 and ℵ(t) · α′(t) = 0 for all t ∈ I. Geometrically
this is saying that ℵ is orthogonal to the tangent vector of α at all points in I.

The Björling problem asks to then construct a parametrisation φ(u, v) for a
minimal surface M such that

1. The curve α is the restriction of the surface φ to v = 0, i.e. α(u) = φ(u, 0)
for all u ∈ I.
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2. The vector field ℵ agrees with the surface normal N on φ along α, i.e.
ℵ(u) = N(u, 0) for all u ∈ I.

Since α(t) and ℵ(t) are real analytic, their holomorphic extensions α(z) and
ℵ(z) are complex holomorphic functions over C ⊇ D → C3 with I ⊆ D.

Theorem 4.35. The only solution to Björling’s problem is given by

φ(u, v) = Re
{
α(z)− i

∫ z

u0

ℵ(w)× α′(w) dw
}

(8)

where u0 ∈ I is fixed and z = u+ iv ∈ D.

We prove this by first assuming some φ is a solution to Björling’s problem
and then showing that φ must look like eq. (8). This shows that any solution
that may exist must be unique. We then prove existence by showing that a
parametrisation like eq. (8) satisfies the conditions of Björling’s problem. This
proof is from [Opr00].

Proof. Suppose φ is a solution to Björling’s problem. So φ parametrises a
minimal surface M . Since isothermal coordinates exist on any minimal surface,
assume that φ is isothermal.

We have then that φ(u, 0) = α(u) and N(u, 0) = ℵ(u) for all u ∈ I.

By theorem 4.15, since φ is isothermal and minimal, φ is harmonic, i.e. ∆φ =
φuu + φvv = 0. So let ϕj be a harmonic conjugate to φj such that φj + iϕj is
holomorphic. Define the holomorphic function β(z) by

β : D → C3

β(z) = φ(z) + iϕ(z)

=

φ1

φ2

φ3

+ i

ϕ1

ϕ2

ϕ3


So then the first derivative of this in terms of u is

β′(z) =
∂

∂u
(φ+ iϕ)

= φu + iϕu

Since β is holomorphic it satisfies the Cauchy-Riemann equations. So then

β′(z) = φu + iϕv = φu − iφv
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φ is isothermal so φu and φv are orthogonal. The unit surface normal N is
orthogonal to both so we have that φv = N × φu. Therefore

β′(z) = φu − i(N × φu)

Restricting z to u ∈ I we get

β′(u) = α′(u)− i(ℵ(u)× α′(u))

since φ(u, 0) = α(u) and N(u, 0) = ℵ(u). Integrating this expression in terms
of real coordinates yields

β(u) = α(u)− i
∫ u

u0

ℵ(t)× α′(t) dt

Suppose that γ(z) is the holomorphic curve defined by

γ(z) = α(z)− i
∫ z

u0

ℵ(w)× α′(w) dw

then we can see that β(u) = γ(u + 0i) for all u ∈ I and so by the identity
theorem we have that β(z) = γ(z) for all z ∈ D.

The real part of β is Re{φ+ iϕ} = φ so

φ(u, v) = Re{β(z)}

= Re
{
α(z)− i

∫ z

u0

ℵ(w)× α′(w) dw
}

which is equivalent to eq. (8) and so we have proved uniqueness.

Now consider the holomorphic function β(z) defined by

β(z) = φ(z) + iϕ(z)

= α(z)− i
∫ z

u0

ℵ(w)× α′(w) dw

Take u ∈ I and note that α′(u) and ℵ(u) are real. Consider the restriction of β
to z = u+ 0i.

β(u) = α(u)− i
∫ u

u0

ℵ(t)× α′(t) dt

=⇒ β′(u) = α′(u)− i(ℵ(u)× α′(u))

and so the real and imaginary parts of β′ are
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Re{β′(u)} = α′(u)

Im{β′(u)} = −(ℵ(u)× α′(u))

Also note that ℵ×α′ is orthogonal to α′ and so (ℵ×α′) ·α′ = 0. Furthermore,
since ℵ is orthogonal to α′ we have that |ℵ × α′| = |ℵ||α′| = |α′| since |ℵ| = 1.

Now consider

β′(u)2 = (α′(u)− i(ℵ(u)× α′(u)))2

= α′(u) · α′(u)

− 2iα′(u) · (ℵ(u)× α′(u))

− (ℵ(u) · α′(u)) · (ℵ(u) · α′(u))

= |α′(u)|2 − 0− |ℵ(u) · α′(u)|2

= |α′(u)|2 − |α′(u)|2

= 0

So then since β′(u)2 = 0 for all u ∈ I, by the identity theorem β′(z)2 = 0 for
all z ∈ D. This is precisely the isothermal condition used in the Weierstrass-
Enneper representation and so we know that the real part of β parametrises a
minimal surface M in isothermal coordinates. This parametrisation is precisely

φ(u, v) = Re{β(z)}

= Re
{
α(z)− i

∫ z

u0

ℵ(w)× α′(w) dw
}

as before. So we have shown that the surface described by eq. (8) is minimal
and in isothermal coordinates. All that is left to show is that conditions 1 and
2 are satisfied.

For 1, since ℵ(u) and α′(u) are real for u ∈ I, φ(u, 0) = Re{β(u)} = α(u) and
so the curve alpha is the restriction of the surface M to v = 0.

For 2, again consider u ∈ I. Recall that β′(u) = φu(u, 0)− iφv(u, 0) = α′(u)−
i(ℵ(u)× α′(u)). Comparing real and imaginary parts yields

φu(u, 0) = α′(u)

φv(u, 0) = ℵ(u)× α′(u)

Then φ is isothermal =⇒ φu and φv are orthogonal and of equal length so
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φv(u, 0) = N(u, 0)× φu(u, 0)

= N(u, 0)× α′(u)

=⇒ ℵ(u)× α′(u) = N(u, 0)× α′(u)

=⇒ ℵ(u) = N(u, 0)

and so the vector field ℵ along α agrees with the surface normal there.

Lemma 4.36. For a curve α(t), if we select ℵ(t) = N̂(t) where N̂ is the principle
normal curvature vector of α (definition 2.10), α is a geodesic on the resulting
minimal surface M under the Björling problem.

Proof. Note that ℵ(t) = N̂(t) = N(t) so the curvature of α always acts completely
in the direction of the surface normal of M . Therefore the geodesic curvature
κg = 0 and so α is a straight line on the surface.

Corollary 4.37 (The Schwarz Reflection Principles). Suppose M is a minimal
surface. Then

1. M is symmetric about any straight line contained in M .

2. M symmetric about any plane which intersects M orthogonally.

See [Opr00] for derivation and further discussion.

Corollary 4.38. If ℵ corresponds to the curvature of α, the generated surface
will be symmetric about α.

Proof. The result follows immediately from lemma 4.36 and the Schwarz reflection
principles.

Example 4.39. Consider the curve α(t) and vector field ℵ(t) defined by

α(t) = (cos t, sin t, 0)

ℵ(t) = α′′(t) = (− cos t,− sin t, 0)

So α will be a geodesic and M will be symmetric about α. The holomorphic
extensions we need are given by

α(z) = (cos z, sin z, 0)

α′(z) = (− sin z, cos z, 0)

ℵ(z) = (− cos z,− sin z, 0)

=⇒ ℵ× α′ = (0, 0,−1)

Setting u0 = 0 and integrating the cross product gives
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(a) φ parametrises a catenoid. (b) ϕ parametrises a helcoid.

Figure 7: Plots showing the real and imaginary parts of β.

∫ z

0

(0, 0,−1) dw = (0, 0,−w)
∣∣z
0

= (0, 0,−z)

therefore β is

β(z) = (cos z, sin z, 0)− i(0, 0,−z)
= (cos z, sin z, iz)

β(u, v) = (cosu cosh v − i sinu sinh v, sinu cosh v + i cosu sinh v, i(u+ iv))

and so the minimal surface M is parametrised by

φ(u, v) = Re{β(u, v)}
= (cosu cosh v, sinu cosh v,−v)

also recall that

ϕ(u, v) = Im{β(u, v)}
= (− sinu sinh v, cosu sinh v, u)

These parametrisations are plotted in fig. 7. Notice that the imaginary part of β
is a helicoid! This is because the helicoid is the adjoint surface of the catenoid.
See [HD10] for further discussion on this.
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5 Exotic Minimal Surfaces

In this section we use Maple to render a few interesting minimal surfaces. See
[Opr00] for more examples.

Example 5.1. Sherk’s fifth surface (fig. 8) is parametrised by

φ(u, v) = (sinh−1 u, sinh−1 v, sinh−1 uv)

Figure 8: Scherk’s fifth surface.

Example 5.2. Henneberg’s surface (fig. 9) is parametrised by

φ(u, v) = ( cosh 2u cos 2v − 1,

sinh 3u sin 3v

3
+ sinhu sin v,

sinh 3u cos 3v

3
− sinhu cos v)

Example 5.3. Take the functions f = z, g = z3 and consider the minimal
surface defined by φ under the Weierstrass-Enneper Representation I (theorem 4.30).
This is shown in fig. 10.

Example 5.4. Let f = g = 1/z2 and compute the associate surface M under
theorem 4.30, substituting z 7→ e−iz/2 after integrating. Plotting the surface for
values of u ∈ [0, 4π] and v ∈ [−1/2, 3] yields fig. 11.

Example 5.5. We can use Maple to programmatically generate and plot the
surfaces associated with a particular curve using the solution to Björling’s
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Figure 9: Henneberg’s surface.

Figure 10: A beautiful minimal surface called “the bat”.

Figure 11: A very curvy minimal surface.

problem. We take an input curve α and set ℵ to the normal principle curvature
vector N̂ . This set-up means that the curve α is a geodesic on the resulting
surface M (lemma 4.36) and M is symmetric about α (corollary 4.38). On these
renders, the dark black line corresponds to the original curve α. See [Opr00] for
a specific procedure.

Let α(t) = (1 − cos t, 0, t − sin(t)) and plot M for u ∈ [0, 4π] and v ∈ [−2, 2].
The resulting surface is Catalan’s surface (fig. 12).

43



Figure 12: Catalan’s surface.

Instead if we take the parabola α(t) = (t, 0, t2), the resulting minimal surface
M is the pringle-like object in fig. 13.

Figure 13: Pringle-like saddle surface generated from a parabola.

Example 5.6. Enneper’s surface (fig. 14) is generated using f = 1, g = z
under the Weierstrass-Enneper Representation I (theorem 4.30).

Figure 14: Enneper’s surface.
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